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Abstract

The 2005 GFD program was entitled "Fast Times and Fine Scales" with a focus on asymptotic
and stochastic modeling methods that exploit a physical scale separation of some kind. An
extremely strong application pool resulted in the appointment of the unusually large class of
eleven GFD Fellows for the summer. The first week consisted of principal lectures from Joe
Keller on waves in fluids, ray methods, and a variety of applications. The second week was
divided between Eric Vanden-Eijnden's lectures on Brownian motion and stochastic differential
equations, and George Papanicolaou's lectures on variational principles and asymptotic methods
in homogenization theory. The principal lectures were particularly well-attended but the lecture
room at Walsh Cottage proved up to the task of accommodating the full audience.

Research lectures by staff and visitors were delivered daily throughout the program addressing
topics ranging from applications of multiscale modeling methods in ocean and atmosphere
dynamics, to applications of stochastic methods in populations dynamics and chemical kinetics,
to applications of homogenization theory in materials science and engineering. The program
also included a popular public lecture on the timely subject of tsunamis. As usual this summer
ended with the Fellows' reports including two experimental projects and theoretical
work on a variety of problems inspired by the summer's research theme.

Oliver Bbihler and Charlie Doering acted as co-Directors for the summer. Janet Fields, Jeanne
Fleming and Penny Foster provided the administrative backbone for the program. Keith Bradley
supplied technical support, and Matt Finn ran the computer network and graciously helped with
the production of the summer's proceedings volume. As always we are grateful to Woods Hole
Oceanographic Institution for the use of Walsh Cottage, the perfect setting for the GFD program.
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GFD 2005 Lecture Schedule

(All talks held in Walsh cottage unless otherwise noted.)

June 20- July 1, 2005 - Principal Lectures Schedule

Monday, June 20 - Friday, June 24, 10:00 AM

Joseph B. Keller, Stanford University

* Review of ideal fluid dynamics; derivation of surface and gravity wave equations.

a Linear perturbation theory, short wave asymptotics and ray methods.

a Applications: shoaling, scattering, and waves in channels of variable depth.

* Heat conduction in inhomogeneous media, effective conductivities and multiscale analysis.

a Longwave dynamics; example: harbor with a small opening and energy exchange with the
outside.

Monday, June 27 - Wednesday, June 29, 10:00 AM

Eric Vanden-Eijnden, Courant Institute, New York University

a Brownian motion, stochastic integrals, stochastic differential equations.

* Kolmogorov backward and forward equations, Feynman-Kac formula, Girsanov theorem.

* Averaging theorems for Markov chains and stochastic differential equations.

Thursday, June 30, 10 AM and Friday, July 1, 10:00 AM and 2:30 PM

George C. Papanicolaou, Stanford University

• Introduction to the use of variational methods for high-contrast diffusivity problems.

* Variational principles for convection-diffusion and their use for the analysis of high Peclet
number behavior.

• The notion of eddy viscosity for 2D cellular flows and its behavior at large Rayleigh numbers.
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Week of June 20 - 24, 2005 - Regular Seminar Schedule

Thursday, June 23
2:30 pm Edriss Titi, Weizmann Institute and Univ. of California, San Diego

Global Regularity for the 3-D Primitive Equations of Large
Scale Ocean and Atmospheric Dynamics

Week of June 27 - July 1, 2005

Monday, June 27
2:30 pm Stefan Llwellyn-Smith, University of California, San Diego

Impact of a Cylinder
Tuesday, June 28

3:00 pm Physical Oceanography Department Seminar, Quissett Campus
Olaf Dahl, Goteborg University
Development of Perturbations on a Buoyant Coastal Current

Week of July 4 - 8, 2005

Monday, July 4 HOLIDAY

Tuesday, July 5
10:00 AM Salvatore Torquato, Princeton University

Random Heterogeneous Materials for Fun and Profit
Wednesday, July 6

10:00 AM Jacques Vanneste, University of Edinburgh
Passive-scalar Decay in Smooth Random Flows

Thursday, July 7
10:00 AM Charles Docring, University of Michigan and

Bill Young, University of California, San Diego
Stirring up Trouble: Estimates of Mixing Efficiency

for Incompressible Flows
Friday, July 8

10:00 AM Jcan-Luc Tliffeault, inperial College
Mixing with Ghost Rods
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Week of July 11-15, 2005

Monday, July 11
10:00 AM Rachel Kuske, University of British Columbia

Multiscale and Noise Sensitivity
Tuesday, July 12

10:00 AM Oliver Buhler, Courant Institute
Wave Capture, Wave- Vortex Duality, and the

Gait of the Waterstrider
Wednesday, July 13

10:00 AM Onno Bokhove, University of Twente
Reservoir Formation in Shallow Granular Flows

through a Contraction
Thursday, July 14

10:00 AM Matt Finn, Imperial College
Topological Chaos in Spatially Periodic Mixers

Friday, July 15
10:00 AM Rachel Zammett, Oxford University

Spiral Troughs and Katabatic Winds on Mars
Geoff Evatt, Oxford University

Dansgaard-Oeschger Events and Subglacial Formation
Andrew Fowler, Oxford University

The Day after Tomorrow

Week of July 18 - 22, 2005
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10:00 AM Andrew Majda, Courant Institute

A New Multi-scale Model for the Madden-Julian Oscillation
Tuesday, July 19

10:00 AM Marcel Oliver, International University, Bremen
Averaging by Degenerate Asymptotics
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Kolmogorov Flows via Continuation, Bifurcation and RPM
Thursday, July 21

10:00 AM Norman Lebovitz, University of Chicago and Joseph Biello, Courant
Institute/UC Davis
Hamiltonian Reduction and Dirac Brackets

Friday, July 22
10:00 AM Andrew Belmonte, Penn State University

Fast Times and Fine Pasta: Stress Waves, Buckling, and
Breaking
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Lecture 1: Fluid Equations

Joseph B. Keller

1 Euler Equations of Fluid Dynamics

We begin with some notation; x is position, t is time, g is the acceleration of gravity vector,
u(x,t) is velocity, p(x,t) is density, p(x,t) is pressure. The Euler equations of fluid dynamics
are:

Pt + V. (pu) = 0 Mass conservation (1)

p[ut + (u. Vu)] = -Vp - Pg Momentum equation (2)

p = p(p, S, T) Equation of state. (3)

Here T= temperature and S= salinity in the ocean or humidity in the atmosphere. (1)-(3)
represent five equations for five unknown functions (p, u, p). We assume T, S are given.

Note
(a) (1)-(3) hold in air with the ideal gas law
(b) (1)-(3) hold in water with the equation of state for water
(c) instead of (1)-(3), the equations of solid mechanics (elasticity, plasticity) hold in the
interior of the Earth
(d) certain conditions must hold at the interfaces between air and water, water and solid,
where the solutions are discontinuous

1.1 Boundary conditions

To study the motion of the water and its upper surface we assume that:
(a) the location of the bottom surface is known:

z -h(x,y,t)

(b) the pressure in the air at the top surface is known:

Pair(x, y, t) = pair [x, y, 7(x, y,t), t].

At the top surface z = 77(x, y, t); q1 is to be determined.

* Kinematic condition

At each free surface, the normal velocity u v v of the fluid in the direction of the unit
normal v is equal to V, the normal velocity of the surface.



= (hx~h•,l) -h_ __

Bottom: = +l V= t+1

uh, + vhY + u; = -ht at z = y(x, t) (4)

-UIx - y71Y + U, = ' at z = 77(x, y, t) (5)

9 Dynamic condition

At z = 71(x, y, t), the pressure in the water equals the pressure in the air (ignoring sur-
face tension):

p[X, y, 70, y, 0, t] = P"(.7" y, 0) at z = q(X y, t) (6)

Note
(a) one condition at the bottomn where h(x, y, t) is known.
(b) two conditions at top where TI(x, y, t) is unknown.

1.2 Initial conditions

P(.x o) = R(x) (7)

n,(.x, 0) = U(X) (8)

71(x., y• 0) = N(x, y) (9)

To solve the initial boundary value problem for motion of the water we must find p(x, t),
"u(x, ,), p(x , ) 7 Q(a, y, t) satisfying (1)-(9) given g, an equation of state, T(xt, S(xt),
Ihi(x,y, t), p"'r(.x, y, t,), R(.x). U (x), N (.x, y).

1.3 Hydrostatic equilibrium in a horizontally stratified ocean

Suppose

p = consloant = p0, h = h(:ix, y), T = T(z), S = S(z). (10)

Then a solution to the Euler equations is:

7. = 0. 71 =0 p = p(z), p= p(z). (11)

Equation (1) is satisfied as are the boundary conditions (4), (5) and the x, y components
of (2). The z component of (2) becomes:

dP = -gp,(), T(z), S(z)], z < 0 (12)
d'z

with b)oundary (ondition

p(O) = Po, (13)

2



The solution of (12) and (13) is called the hydrostatic pressure.

To solve for p(z) we need an equation of state. An approximate equation of state for
seawater is:

p = po -caT +/3S, po, a, /3 =constants > 0. (14)

The solution of (12) and (13) is:

p(z) = Po - g [Poz + a j T(z')dz' -3 13 S(z')dz', z < 0. (15)

The solution (11) solves the initial boundary value problem when the initial values (7)-(9)
are also also given by (11). How do we find solutions for different initial and boundary
data?

1.4 Perturbation method for solving problems

Consider an equation depending on a parameter E

F(u, f) = 0. (16)

The unknown u may be a function of x, t or a collection of functions like p, u, p, r7, and F
may be a set of equations like (1)-(6) with initial conditions (7)-(9). The solution of (16),
u(E), will depend upon c. If it is a smooth regular function of f, we can expand it in a
Taylor series:

U(6) = u(O) + Eit(0) + o(E 2 ) (17)

du(E)
de k=0.

Suppose that we can solve (16) when e = 0, i.e. we know u(O). Then we can differentiate
(16) with respect to f and set E = 0:

F.[u(0), 0]iL(0) + F[u(0), 0] = 0. (18)

If we solve (18) for it(O) then (17) will give u(E) with an error O(E2). A better approximation

can be obtained by keeping the term •ii(0) and differentiating (16) twice to get an equation
for ii(0) etc.

This is the regular perturbation method, and E is the perturbation parameter. Equation
(18) is called the variational equation of (16). It is linear in the unknown l(0), so it is called
the linearized equation (linearized about u(O)). It can also be derived by substituting (17)
into (16) and expanding in powers of e.

Note that E can be any parameter, or set of parameters, which occurs in one or more

3



of the differential equations or in the boundary or initial conditions. The linear operator
F,[t(O), 0] in (18) is always the same. Only the inhomogeneous term F,[u(0), 0] depends on
what the parameter is.

Here are some examples of how we can perturb hydrostatic equilibrium.

Let Po, ho(x, y), Po be the equilibrium solution, and then set
p air = Po + EP1 (x,y t) atmospheric disturbance (19)

hI h=o(x, y) + (/,I (x, y, t) bottom motion (earthquake, landslide) (20)

tl(x, t) = 0 + C7l1 (x, y) initial elevation or depression (21)

"u(x, 71, 0) 0 + Eu] (X, y) initial motion (22)

p(x, 71, t) po(z) + ,oP (x, y, z) initial density anomaly. (23)

To get the linearized equations, we linearize about the equlibrium solution. We start with
(1):

pt + V(pu) = 0.

We differentiate with respect to c

/t + V. (5U + pit1) = 0.

We set c = 0 and then 7j. = 0, p = Po. Hence

ýt + v -(p0 (Z)71) = 0.()

Similarily, linearizing (2)-(9) we get

poilt =-vf) - 5g (2)
/5 Pp(Po, T, S)j5 + PTT + pSý (0)

it*h1,0 + i)+ Noy + ub = -it at. z t-ho(x, y) BC at bottom (4)

yi,=7)t at z =0 BC at top (5)

S+ptl )=p p at z=0 BCattop (6)

,(.x,0) = p, at t =0 (7)
,i,(x.• 0) = UI at t=0 (=)
li;(x,0) = Ti at t =0. (9)

Equations (1) - (M) are the linear equations for /5, t., j), u) and constitute an initial boundary
value problem.

2 Fluids of Constant Density

Now let's suppose that p is a constant. Then we can cancel p from the continuity equation
to get

V-ut =0.

4



This condition states that u is divergence free. The momentum equation becomes

1
Ut + (u. V)u -- p - g.

P

Recall we also had an equation of state, relating the density to temperature and salinity.
Here this equation is simply p = Po, a constant.
Since the density is constant, (15) becomes

p(z) = Po - gpoz.

Linearizing the equations around a rest state yields the linear system

V -it-=0

P

At the beginning of this section we assumed the fluid was of constant density, and showed
that this implies a divergence free velocity field. If we assume instead that when we follow
a fluid element the density does not change (rather than assume that the whole fluid has
constant density), we get

Dp-- = Pt + u .- V p = O.

The conservation of mass equation is then p(V . u) = 0. Thus if the fluid is incompressible,

this also implies a divergence free velocity field.

Free Surface

p =p(gl -
'tt+ v (.5 0

Fluid
"Ad, = 0

Bottom
V •7 'o = -h.

S=-h(•', t)

Figure 1: Irrotational flow of an incompressible ideal fluid
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3 Irrotational Motion

Now let's introduce the quantity w = V x u, the vorticity of the fluid. If we assume that
(or begin with) a fluid where this quantity is zero, then we say the motion is irrotational.
When u(x, t) is a curl-free vector field, then we can introduce a potential functionX

0(x, t) = Ju(s, t)ds.

Here this integral is evaluated along any curve C from xO to x. It is a calculus exercise
to show that this potential is well defined only when we have an irrotational vector field
(hint: use Stokes' Theorem). Notice now that u = VO so if an incompressible fluid is in
irrotational motion, then conservation of mass gives

V. -, = V. VO = AO= O.

Thus < solves Laplace's equation, or in other words, ¢ harmonic. Now consider the mo-
mentmn equation 1

ut + (V. V)1 + I-Vp = VV.p

Here V is a potential function for the force, f, acting on the fluid. Now we can plug in
'a = V4, to get:

V<t + 1/2V(VO) 2 + 1Vp - VV = 0.P

If p is a constant, we can integrate this equation, to get:

01 + 1/2(VO) 2 + 1p- V = B(t).P

This is called Bernoulli's Equation. Here B(t) is an integration constant, which we can set
to zero. If B was not zero then we could consider a new system where 0 is redefined to be
' =q + .¢ B(s)ds, and see that V) solves Bernoulli's equation with zero right hand side.

Since the gradient of ') and Q agree, and it is this gradient we are interested in, we can
safely set B to zero. Now we can solve for the velocity and pressure by solving for 0 using
Laplace's Equation, and then solving for p using Bernoulli's equation. The boundary value

1)roblem for < and 'q is shown in Figure 1.
In Figure 1, we have a linear pde for 0 with a linear boundary condition at the bottom

boundary. On the surface, we have two nonlinear boundary conditions imposed at a location
which depends upon the solution. In linearizing this system about a rest state, all the
equations stay the same except those on the free surface. There we get

6•+ 1) VO + .. VO + (V . VOZ)A 0 Z = 0
1 " 9

(12"r .g - Ot- 6t-, + -(VO Z 0.

Since the rest state is < 0 and 7= 0. these linearized surface equations become

7-, - - = 0 z = 0

0, +.q1 rir Z= 0.

6



Now we can differentiate the second equation and plug it into the first to get a single linear
free surface condition

ctt + Pzz = 1
P

When p and q are time harmonic with time dependence exp(-iwt) this becomes

W2 "
WiWpair - z =0 z = 0.

9 Pg

The equations for the fluid below the surface are

& = - ht z = -h

Aq5=O -h<z<O.

These last three equations govern time harmonic small amplitude irrotational motion of an
inviscid fluid of constant density.

Notes by Benjamin Akers and Tiffany Shaw.
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Lecture 2: Gravity waves and the method of stationary phase

Joseph B. Keller

1 Gravity waves on a layer of uniform depth

In addition to the boundary conditions on the upper and lower interfaces, ý must satisfy
both the initial conditions and boundary conditions on lateral surfaces or at infinity. We
consider free vibrations, in which neither the bottom elevation nor the pressure at the free
surface are perturbed. Moreover, we specialize to the case of uniform depth h(°). We now
summarize the governing equations derived in the last lecture:

V2  0 (-1) < z < 0

subject to the boundary conditions

0 o z=-h1(0) 1; 0 at z 0. (2)Oz 0onz' z

Recall that < represents the spatial variation of the velocity potential, and we have defined
a wavenumber /0 =_ U2 /q. We seek to solve this system of equations using separation of
variables: 0;(x, y, z) = U(x, y)f(z). After this substitution, (1) yields

____+U___ / k. (3)

U f

The boundary conditions (2) become

f'(--()) = 0 , and f'(0) = •f(0) . (4)

In equation (3) since the left hand side is a function of only x and y and the right hand
side is a function of z only, both must be constant, equal to some -k 2 . f and U then must
satisfy

U,, + U, + k2U 0, (5)

f" = k 2 f . (6)

(5) is called the Helmholtz or rmduced wavc equation. Solving for f and applying the first
of the boundary conditions (4), we obtain

.(z) A cosh[k (z + h)], (7)
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where A is an arbitrary constant, and we have suppressed the superscript upon h. In order
to satisfy the free surface boundary condition, we need that ksinh(kh) = /3cosh(kh), or
equivalently

W = gktanh(kh) . (8)

This is the dispersion relation, k is the wavenumber, and w is the angular frequency. It may
seem surprising that (8) only has one positive and one negative real solution. There are
infinitely many pure imaginary roots k = iK to this equation, but these represent evanescent
modes.

There are two physically interesting special limits

"* Deep water:
kh- oo w2 _ gk. (9)

"* Shallow water

kh --* 0 w2 "-'ghk2. (10)

Another useful concept is the phase velocity defined by

C V p/k as kh-oo(11)k v• g as kh -* 0

Notice that to leading order the phase velocity is independent of the wavenumber in the
shallow water limit. Media with this property are said to be non-dispersive.

We can now solve for the x and y variations of the velocity field. Plane wave solutions
of the Helnholtz equation have the form

U(x,y) e ek, where Ikl = k . (12)

Therefore
¢(x, y, z, t, k) = Aei(k•w-wt) cosh[k(z + h)], (13)

r1(x, y, t, k) I- -t L A ge (kxwt) cosh(kh). (14)
g z=O 9

Finding the wavenumber for a prescribed frequency w requires solving a transcendental
equation (8). It is easier to give k and then determine w directly from (8).

2 Trajectories of fluid particles

By further integration we can obtain expressions for the motion of the water particles. We
choose axes so that k points in the x-direction, and consider the small excursions of a fluid
particle (x + 6x(t), z + 3z(t)), where 6x and 5z evolve according to the linearized equations:

d~x- ikAei(kx-,t) cosh[k(z + h)] (15)

dt
d6z - kAei(kx-wt) sinh[k(z + h)] (16)

dt

9
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Figure 1: (Blue curve) Superposition of two waves of narrowly separated wavenumber and frequency.
(Green curve) The predicted curve envelope. Here 6k = k/lO.

On integrating up, and explicitly writing out the real part (assuming that A is real for
convenience) we arrive at:

Ak
6.,r(t) - COS((k.7 - wut) cosh [k(z + hi)] (17)

6z(t) - sin(k.x - wt) sinh[k(z + h)] (18)
U)

The particles therefore trace out an ellipse in the (x, z) plane, with horizontal axis (Ak/w) cosh[k(z+
hI)] and vertical axis (Ak/w) sinh[k(z +I h)].

3 Group velocity

First, consider the suplerposition of disturbances having slightly different wavenumbers, and

identical amplitudes:

0± = A sin[(k ± 6k)w: - (wu ± &w)t] (19)

The sum of the two velocity potentials may be simply written:

0 - _ = 2A cos(6kx - 6wt) sin(kx - Lot) (20)

The sin and cos factors describe respectively the wave, traveling at the phase velocity
c = w/k, and the much slower oscillations in the amplitude envelope, which propagates
at the grToup veocity c9j =- dce/dk ;5w/k. This 'beat' structure persists for wave packets
with any small spread of wavenumbers. The wave packet travels at the group velocity, while

10



individual wave components move through the wave packet at their phase velocities. For
gravity waves on a uniform fluid layer we have:

cg.c (, 2kh )(21)
c l 2sinh(2kh) (

Again we consider two limits for (21):

l{c as kh-• o (22)
C9 t c as kh -- 0

Now we calculate the period-integrated energy flux F through a surface x=const, with
unit width in the y-direction. This is equal to the rate of working of the pressure force
across the surface, or since in the linear approximation p = -pO'/Ot, to:

F =_p f+T [fsOO •
F t ---[adS1 dt, (23)

where T = 2,.2 Note that it is only necessary to evaluate the z integral over the interval
-h < z < 0; the contribution from the sliver 0 < z < qj is of lower order. After some
calculations, we discover

Fv=F A 2 pw2  2F Tv- -2 cosh2(kh)cg. (24)T 2g

Next let us calculate the total energy (associated with the flow) in a box R: {xo < x < xo+A,
Yo < Y < Yo + 1, -h < z < 77}.

E=pJ [I((Vq )2 + gz]dV + ½Agh2 . (25)

The integral represents the total (kinetic plus potential) energy of the fluid contained within
the box, and the additional summand is simply the hydrostatic potential energy which must
be subtracted off. With a little algebra, we find that

E =r = E _ A2pw2 cosh 2(kh). (26)A 2g

From (21), (24) and (26) we get
Fay = Eavcg , (27)

so that the energy of the wave propagates with the group velocity cg.

4 Superposition of plane waves

A general solution of the wave equation can be written as a linear combination of plane
wave solutions of the type considered:

S(X, y, t) d J d~k iw(k) (A ~cosbkh ei(k, ) - B(k) cosh kh ei(k~±wt)) (28)



The amplitude functions A(k) and B(k) can be determined to make 7) and 7t satisfy initial
conditions. The fluid elevation at time t = 0 is

•(x, y 0) J d2 k iw(k) cosh khI (A(k) - B(k)) k-. (29)

Thus the Fourier transform i- of the initial fluid height is related to A and B by

il(k, 0) - iw(k) cosh kh(A(k) - B(k)) (30)
9

Similarly for the Fourier transform of the initial velocity of the free surface,

( 2
7h(k, 0) - w(k) cosh kh(A(k) + B(k)) (31)

9

Thus from (30) and (31) the amplitude functions are determined by:

2w 2

2w- i210 Cosh kh A(k) , (32)9

2w
2

71t + iw1711() cosh kh B(k) (33)9

Ho-owever convoluted the initial conditions upon the surface elevation, we can obtain the
complete evolution of the fluid surface height if only we can evaluate these integrals. In
the days when computation was expensive, this was a knotty problem, since the range of
integration in wave number space extends out to infinity, and the amplitude functions may
decay only weakly as the wavenumber is made vanishingly small. In the next section, we de-
scrib)e a powerful asymptotic method for evaluation of the integral far from any disturbance

sources.

5 Asymptotic evaluation of integrals

We consider the simplest case of a one-dimensional disturbance, and seek to evaluate the
following integral:

71(x, t) = A(k)ei(kx-L(k)t)dk (34)

When x and t are large, the integrand of (34) oscillates very rapidly and everything is
canceled out. So the dominant contribution to 7I(x, t) comes from the neighborhood of k
k,, a stationary )point at which the derivative of the phase function S(k, x, t) = kx - w(k)t
with respect to k vanishes. We approximate S about k = k, by a Taylor series expansion:

S((k) S(A:) + Sk(k,)(k - k,) + ,S&k(k)(k - ks)2 + (35)

Noting that Sk(k,) = 0, we find that (34) can be approximated by the Gaussian integral

'7(.x, t) "- A(k,)csk) / ý e~k(5(~ dk

SA (ks )CiS(k,) F27r C , (36)
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where ± sgnr(Skk(k,)). Therefore, for x, t > 1,

A (k (i) e(k~x-w(ks)t)

Iw"() t 'Vf (k,) ft (37)

since Skk = -w"(k)t. We must sum over the contributions from each of the wavenumbers k,
giving group velocities cg(k,) = x/t. For the given dispersion relation (8), there is precisely
one such wavenumber. This method is called the method of stationary phase.

There is a singularity in (37) if w"(ks) = 0, i.e. at the maximum attainable group
velocity. From the form of the dispersion relation (8) it may be determined that this occurs
iff k = 0 (the 'if' statement is an obvious corollary of c. being an even function of k, but
the converse statement requires a little more work). Much of the energy introduced into the
medium at the source piles up in the fastest-traveling part of the wave packet. It follows
that the formula is not valid in the neighborhood of values x, t where x/t = cg(O) = v/•.
To correct it, it is necessary to extend the Taylor series for x/t close to v/ghi:

7(z, t) - A(ks)eiS(k,) j dkei(k-k,)3 Skkk(ks)/6

SA (k,) e (ksx-wt)]0 dor ~a 617 S )1 1/ e iksxiwt Ai(0) (38)""~~~~ A0se0kx•)-od ISkkk(k,) 11/3 -- ISkkk(k )I

Since Skkk(k,) is proportional to t at k, = 0, 77 decays as t-1/ 3 . This decay is significantly
weaker than the t- 1/2 decay at points behind the front. In order to obtain a uniform
approximation which combines (37) for x/t $ gh and (38) for x/t ; gVh, we can retain
both the cubic and quadratic terms in the expansion of S(k). The resulting integral can be
written as an Airy function for q7. This integral was first used by George Airy in his analysis
of light-scattering by spherical raindrops, the first quantitative model for the distribution
of colors in a rainbow.

This transitional expression is valid near the front x/t = V/gTh but it becomes inaccurate
far from the front. A result valid over the whole range of x and t can be obtained by writing
S(k) as a cubic polynomial in a new variable in a suitable way. This method, developed by
Chester, Friedman and Ursell, yields an Airy function of a more complicated argument. It
was applied recently to tsunami waves by Berry.

Notes by Marcus Roper and Aya Tanabe.
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Lecture 3: Asymptotic Methods for the Reduced Wave
Equation

Joseph B. Keller

1 The Reduced Wave Equation

Let v (t, x) satisfy the wave equation

1 &2v
C2 (X) Ot2

where c(X) is the propogation speed at the point X. Separate variables, letting v (t, X)
g (t) v, (X). Then

c2 (x) AU. (x) _ g" (t) _ 2.
c ,2 (x) g (t) (2)

So
g." (t) + C,;2.q (t) = 0 (3)

and

A,,? + - , u --z 0. (4)

Here the constant, w is the an gular fr'equency. Equation 4 is known as the reduced wave
equation or the Hci'rnholtz equation. Introduce a constant reference speed co, and define
the index of refraction n(X) = co/c(X) and the propagation. constant (or wave number)
k = w/co. Then the reduced wave equation (4) becomes

Au + k2 ,,12 (X),'1 = 0. (5)

2 Leading order asymptotics

When n(X) is constant. the reduced wave equation has the plane wave solution

(X, K) = z (K) cK. (6)

Here the propagation vector K is any constant vector such that IKI = k, and the amplitude
z (K) is a constant. In the case of n (X) not constant, the plane wave solution motivates
looking for solutions to (5) of the form

1 (X) = z (X. k) c.iks(X) (7)
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Here z(X, k) is the amplitude and s(X) the phase. Substituting this form into the reduced
wave equation (5) yields

-k 2 [(Vs)2 - n2] z + 2ikVs . Vz + ikzAs + Az = 0. (8)

We are interested in looking at the asymptotic behavior of solutions to the reduced wave
equation (5) as k -* oc. To explore this, we suppose z (X, k) has an asymptotic expansion

of the form
00 00

z (X, k)- E zm(X)(ik)-r= E zm(X)(ik)-' , Zm =0 for m= -1,-2,.... (9)
m=O M=--0

Here - denotes asymptotic equality. The asymptotic expansion above means that for each
n>0

n

z(X, k) = ZM (X) (ik) m + o (k-n) (10)
m=0

where the notation o (k-n) denotes a term for which limk-.0 0 knIo (k-n) = 0. Note that

an asymptotic expansion may not converge! However, by truncation of the series we get an

approximation with an error which tends to zero as k --+ 0. Substituting the asymptotic

expansion (9) for z(X, k) into (8) yields

>(ik)1 -rn{ [(Vs)' - n2] Zm+] + [2Vs. Vz + zmAs] + AZm,}- 0. (11)

The coefficient of each power of k must be zero. For m, = -1 this gives

E (Vs) 2 - n 2] ZO = 0, (12)

since z, = 0 for m = -1, -2, . Assuming z0 • 0, this implies the eikonal equation for
the phase s,

(Vs) 2 = n 2 (X). (13)

m 0 yields the transport equation for the leading order amplitude zo,

2Vs • Vzo + zoAs = 0. (14)

m = 1,2,... yield further transport equations for determining the other zm. We shall

concentrate on the leading order amplitude z0 in what follows. The leading order solution

zo (X) eiks(X) is known as the geometrical optics field.

3 Phase, Wavefronts, and Rays

Surfaces of constant phase, defined by s(X) = constant, are called wavefronts. Curves

orthogonal to the wavefronts are called rays (or more generally, characteristics), and are
used to solve for s(X). We write the equation of a ray in terms of a parameter Cr in the

form
X = (xI, X2 ,z 3 ) = X (U) (15)
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Orthogonality of the ray and the wavefronts implies

dxj - A as (16)
do- Dxj'

where A(X) is an arbitrary proportionality factor, and j = 1,2,3. Now, dividing the above
expression by A, differentiating with respect to cr, and using the summation convention we
have that

di'ldxj) d /0Ds dxi D2s Ds D2s A a ( Ds as (17)
d- A do da 'D= j dor D.xriDxj Dx- ax •xj 2 Dxj Oi Dxi

Then, using the eikonal equation (13) on the right hand side we have that

I d dx _ 0 (n2) (18)A dr a Adcr ax - 2 (8

Furthermore, substituting the orthogonality equation (16) into the eikonal equation (13)
yields

dxj dxj_ A2 ,n2. (19)

dor do

The four equations given by (18) and (19) are known as the ray equations. The three
equations given by (18) are second order ordinary differential equations for the rays X(o),
and (19) gives the variation of or along the ray. The rays are determined solely by n(X)
once the initial values for (18) are specified and the arbitrary proportionality factor A(X)
chosen].

Since A is arbitrary, we may choose it as we please. When A = n- 1 the ray equations
1)ecorne

-d / dxN n 2•n2

do? r,_ -1 I- (20)
d~xj d~xjd-x 1. (21)
dor dor

(21) implies that 7 is simply the arc length along the ray. When A = 1 with or replaced by
T, the ray equations become

dr2 j D 1( ( 2  (22)

dT2  D.xj 2)
dx3 dxj 2 (23)

dT dT

(22) has a natural interpretation in terms of classical mechanics, with the left hand side
being an acceleration and the right hand side being the gradient of a potential. Also, from
(21) and (23) we can see o7 is related to 7 by

do = Od-Tjdx-dx = ndT. (24)

(0"T is known as the optical length. along a ray.
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4 Ray solution

The eikonal equation (13) can be solved for the phase s. Using the orthogonality (16) we
have for the derivative of s along a ray

d Os dxj = A Os Os = An2  (25)
sx (ao)] -x da Oixj axj-

This can be integrated to give the solution for s

s[X (o)] =s[X(oo)] + j A [X (oa')] n2 [X (a')] do'. (26)

The transport equation (14) can be solved for the leading order amplitude zo. Again
using orthogonality, we find that

VS Vz0  Os dzo _ 1 dxj dzo 1 d [X (ai)] (27)
Oxj dxj - A do dxj - A do-z[

Thus the transport equation (14) becomes a first order ordinary differential equation along
the ray

2 dzo2 d-- + oZsO = 0. (28)

Given initial conditions (28) can also be integrated to solve for z0 . However, there is a more
direct way to solve for z0. Note that (14) implies

V- (z2Vs) zo (2Vzo • Vs + zoAs) = 0. (29)

Introduce a region R bounded by a tube of rays containing the given ray, and by two
wavefronts W(ao) and W(a) at the points 00 and o- of the given ray (Figure 1). Then
the gradient of the phase, Vs, is parallel to the sides of the tube and normal to its ends.
Integrating (29) over R and using the divergence theorem yields

0 = jRV . (zVs) dV =J zJoVs. Nda- f z2Vs Nda. (30)

Here N is a unit vector orthogonal to the wavefront and da is an element of area on the
wavefront. From the eikonal equation (13) we have that Vs • N = n. Then, by shrinking
the tube of rays to the given ray we obtain the solution for z0 from (30)

zO (a)n(o)da(oa) = Zo(ao)n(ao)da(o-o). (31)

This can be written more conveniently in terms of the expansion ratio ý (a) with respect
to a reference point o1 on the ray, defined by

(0) = da(oa) (32)
7o , (al)
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Figure 1: Ray tube and wavefronts defining region R.

N

\R

W (Uo)

The expansion ratio measures the expansion of the cross-section of a tube of rays, and is
simply the Jacobian of the mapping by rays of 1F (a 1 ) on IV (a). (31) then becomes

Z) (a) = z0 (a 0 ) [ (UO) n (a6) 12 (33)L (a) ni (a) I
Im1portantly we note that the amplitude z0 (a) varies inversely as the square root of nr
along a ray. Thus for v- constant, as rays converge the amplitude z0 increases, and as rays
diverge zo decreases.

5 Case of Homogeneous Media

A homogeneous medium is defined as one where the propagation speed c(X), and thus
n(X) = co/c(X), are constants. If A = -1, the ray equations (22) become

d72 Q7j 2  =0. (34)

(34) gives that the rays are straight lines. The equation (26) for the phase s becomes

s(a) = s(a(0 ) + n(a - ao). (35)

To determine the amplitude z0(a) using (33), we need to determine the expansion ratio
,(a). To calculate the expansion ratio, look at two intersecting rays which form an infinites-
imal angle d01, as in Figure 2. Now take any two wavefronts W(0) and W(a) intersecting
these two rays. Denote the distance between them as aT, and the distance to the intersection

point to be P1, the radius of curvature of 117(0). Then we can calculate the infinitesimal
area ratio to be

•(a) = da(a7) _ (p, + - )dO1 _ Pi + cr (36)
do(0) pj dOi P1
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S(0) wV(o)

Figure 2: Calculating the expansion ratio.

P1 + a is the radius of curvature of W(u). (36) states that the expansion ratio is just the
ratio of the radii of curvature of the two wavefronts. (33) then becomes

z0(a) z0 E (a0) ±l-t I°1/2
zo(a)= (37)

p1 Pi+ aI

To use this analysis works in three dimensions, we must take twp cross sections which

slice the wavefront into its curves of maximal and minimal curvature. In 3-D this analysis
gives the expansion ratio

(P1 + ±)(P2 + a) (38)
PiP2

The 3-D analogue of (37) is

= [ (P1 + )(P2 ) 1/2 (39)

zO(a) =zO(o) L (pl + )(p2 + U) (

6 An Initial Value Problem for the Eikonal Equation

Here we consider the solution of the eikonal equation with initial data s(x) given at x on a
manifold M, ie a point, line or surface. The eikonal equation is

(Vs) 2 =n2. (40)

To make s(x) unique, we impose the condition that the solution is outgoing. Mathematically,
this condition can be expressed as

Vs • N > 0, with N = The unit outward normal from M. (41)

Here M is the initial surface from which the solution is outgoing.

We will solve this problem using the method of characteristics. When the initial data
is given at a point p, we can define the solution, using the previous theory, on each ray
emanating from p.
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When the initial data is given on a curve C we must determine the angle at which rays
emanate. This can be done by p)arameterizing the curve by arc length, q7. Now the initial
condition sic = so(?7) with a parameterization X0(r/) of the curve C, yields the equation
so(r/) = s(XO(7 1)). Differentiation yields

Vs- dX 0 - ds (42)
drq d77

Now we use the vector identity a. b a lbI cos 0, where a and b are vectors and 3 is the
angle between them. Then (42) gives that the angle O(+]) between the tangent vector

to the curve C and the direction Vs of the ray is given by

s(.001)) =1 ds0  1 ds0iVsi d7y - ij[Xo(7)] d7 (43)
We have now shown how to solve the initial value problem with initial data at a point

p or on a curve C in an infinite domain. Similar analysis works when initial data is given
on a surface. Next we will consider what happens when the domain has boundaries.

7 Reflection From a Boundary

In order to consi(der reflection from a boundary B, we must first prescribe a boundary
condition. We will take the general imledance boundary condition, with impedance Z:

0'a + ikZ(X)u = 0, X on B, v = VB. (44)

Notice that the limits Z - 0 and Z - oc yield the simpler Neumann and Dirichlet boundary
conditions. To satisfy Ihe boundary condition (44), we must introduce a reflected wave, ur
in addition to the incident wave. •,•'. Here we will try the same type of expansion for u'r
that we have been using for 'a"

0CC r ;,(i/k)-" (45)
71=0

Now plugging v, = + 'u' into the boundary condition, we see immediately that the phases
must match on the boundary for these waves to add to zero

S' (X) = s7(X), X on B. (46)

Now collecting powers of (ik) we get the following equation for the leading order amplitudes

Zo - + Z + Z ( +Z) = 0. (47)

Thus
_,- _I + Z (8

•0 4 0 . (4 8)' aO

We have found the phase and amplitude of the reflected wave on the boundary. Then we
can use the previous inethod to construct the reflected wave.
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8 Reflection From a Parabolic Cylinder

To illustrate how this method works we will consider the example of waves reflected by a
parabolic cylinder. Physically we could envision this to be the example of waves hitting a
vertical cliff with a parabolic profile when viewed from above. Here we will consider the

Rays

Wavefronts K K

Vr
Figure 3: Reflection from a parabolic cylinder.

simple problem of an incoming plane wave eik , with the x axis the axis of symmetry of
the parabola. We will also take a uniform bottom, so that n =- 1, and the cliff face to be
rigid, a• = 0 for x E B. Now using the fact that parabolas focus all rays to a point, we see
that the rays reflected from the boundary of the cliff will all emanate from the focus of the
parabola. Thus the wavefronts will be circles centered at the focus of the parabola (Figure
3). If we define our coordinate system with origin at the focus of the parabola, we get the
phase of the reflected wave to be

s(r) = so + r. (49)

Here r is the distance from the origin, as in polar coordinates. We can also determine the
reflected amplitude. Here matching the incident and reflected amplitude on the boundary
and using equation (37) give

zo(r) = r(0) (50)

Vr

Here r = r0 (0) is the equation of the parabola. Thus we get the leading order solution to
be

U = Ui + - e ikx + ro•(• ) eik(so+r). (51)

Similar analysis enables us to determine the higher order terms in u'.

Notes by Ben Akers and John Rudge.
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Lecture 4: Geometrical Theory of Diffraction (continued) and
the Shallow Water Theory

Joseph B. Keller

1 Introduction

In this lecture we will finish discussing the reflection from a boundary (Section 2). Next, in
Section 3 we will switch to the geometric theory of diffraction without formal details (see
[3]). Further, in Section 4, we will generalize the surface water wave theory to a case of
non-uniform depth (see [2]). This theory predicts infinite amplitude at the shoreline, hence,
in Section 5, the shallow water theory is introduced to fix that problem.

2 Reflection from a boundary

In the previous lectures we developed a method for solving the Hcirrholtz equation

AU + k 2,11 2 (X)U = 0. (1)

It yields an asyniptotic approximation like geometrical optics. It was applied to reflection

by a p)aral)olic cylinder. Now let uls analyze reflection of waves, in water of constant depth
hI = const, by an arbitrary smooth boundary B, e.g. a vertical river bank. In this case the
velocity potential is given b)y an incident contribution 0' and a reflected part 0'. Since the
normal velocity on the boundary vanishes, 0,61B = 0. The zero-order asymptotic solution

is given by
O; + or z0() ± i xekS'. (2)"

The condition of vanishing normal derivative yields

ikS•2 s2 CikS'• (.'r) + Cik±(' + ik a sr C.S`-r(X) + e. a Z0CX) 0. (3)

Upon equating the exponents in (3), we get

Si = Sron 0B. (4)

Then upon equating to zero the coefficient of k in (3), we get,

•o Si +:" - S,• = 0.(5
2 (5)
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Lrom (4), the tangential derivative 5-, equals Os1 Then from the eiconal equation, the
normal derivatives are related by

si )2 ) 2_ (aSi 2 = 2 oSr) (D2 ((Si)
2

a n n • a-)=\a (6)

Thus OS'l/n = ±•SlOn. The "+" sign would yield Sr(x) SZ(x), so we must choose the
"-"1 sign

aS. asio-T =- a-T(7)
On an

Then (5) yields
z = z on B. (8)

From OS /OlT = 0S1/01T and (7) we get law of reflection, familiar from geometrical optics.

Instead of a rigid boundary, we can also consider the impedance boundary condition

0 + ikZ 0. (9)On

This condition is frequently used in electrodynamics, and in acoustics for compliant bound-
aries. In this case it follows that

Sr(X) = s'(X), X ýon B, (10)

"ZO (o ) &- 0 v Z)O, X on B, (11)

4( a z) + Z + + + --Z) --+z + =-0, m_> 1, X on B. (12)

In terms of the incidence angle a and the impedance Z, (11) gives the reflection coefficient

0z. ncosa-Z (13)
zz ncosa + Z'

again for X on B.
Fermat's principle of geometrical optics follows from the eiconal equation. It states

that a ray travelling between two points takes the path with the shortest optical distance.
For media with n(x) = const, we can find this path by imagining a string tightly spanned
between these two points. Then the ray path will lie along this string.

To calculate the wave field numerically one often uses the finite element method. Due
to the oscillatory nature of the wave field, this procedure requires very small elements. But
we know that. the leading order approximation has the form z(x)eikS' + z'(x)eikSr. We can
use this ansatz, calculating the phase by means of rays. After that the amplitudes zi(x)
and z'(x) can be calculated by the finite element method. This allows us to use much larger
elements.
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A
N

C

.. - B D Shadow

region

Figure 1: Scattering by a smooth object. Regions for asymptotic expansion: A - region of

ordinary geometrical optics, B - point at. which incident rays are tangent to the boundary,
S - the object boundary, C - shadow boundary, D - shadow region.

3 Geometrical theory of diffraction

The asynmptotic expansion method presented in the previous lectures is incomplete because
of phenomena which are usually not taken into account by ordinary geometrical optics.
Let us for example consider water waves being scattered by an island which we assume
to be an oval-shaped object with smooth boundary. From ordinary geometrical optics
follows that there exists a shadow region. D (see Figure 1) in which the intensity of waves
is zero. This region is separated from the region A, reached by incident and reflected
rays, by a surface called the shadow boundary. Obviously, along this boundary the solution
obtained by the ordinary eCoirietrical optics method is discontinuous. However, this is in
sharp contradiction with the fact that solutions of the Helmholtz equation (1) are smooth
away from the boundary. Agreement of asymptotic solutions with actual solutions can be
achieved byN, introducing boundary layer solution in the neighborhood of shadow boundaries.
They can be found by using asymptotic expansions of certain exactly solvable problems,
or constructed by boundary layer techniques. The construction of asymptotic solutions
requires different expansions in different regions.

We first will consider asymptotic solutions in the shadow region D. The only rays which
reach this region are rays diffracted by the boundary S. They are called surface difjracted
'rays. To construct them we introduce suTface rays (or creeping rays) which propagate

along the boundary S. The point B (see Figure 2) on the boundary between the shadow
region D and the illuminated region A acts as a source for these rays. Note that at this
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Figure 2: Surface diffracted rays omitted by the propagating surface ray starting at the
point B.

point the incident ray is tangent to the boundary. Therefore, the incident ray splits into
two branches. One branch goes along the shadow boundary C while the other is the ray
travelling along the boundary S. The latter radiates surface diffracted rays into the shadow
region, and therefore the boundary S acts as a secondary source. Because of this radiation,
the intensity on the surface decays exponentially with distance along the ray. The surface
ray travels infinitely many times around the boundary. Thus it sends an infinite number of
surface rays to each point in the shadow, and also to each point in the illuminated region.
Thus the complete wave field in the shadow region is an infinite sum of diffracted fields on
surface diffracted rays.

The wave field on and near the shadow boundary can be obtained by using boundary
layer theory. It yields Fresnel integrals which were used in the method of stationary phase.
In the neighborhood of the separation point B there is yet another kind of asymptotic
solution, given by the Fock function.

The asymptotics of the wave field in the neighborhood of theboundary S can be obtained
from the exact solution of the Helmholtz equation for diffraction by a circular cylinder of
radius a. In cylindrical coordinates a mode of the two dimensional wave field can be written
as

U = C" H,(')(kr). (14)

Here H,(1), the Hankel function of first kind [1], is outgoing. Suppose the boundary condition
is u(r)Ir=a = 0. This leads to the equation

H )(ka) =0. (15)
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Figure 3: The Lam6 curve.

This equation (15) has infinitely many complex roots V,,,. The asymptotic behaviour of vm
for ko >> 1 is given by

ij,,, ko, + (ka) 7,, (16)

When (16) is used for v in (14), 'u becomes

"ut'= c4"- 0Hul)((kr) ,e eikaOO+iC,/ 3Tr (Aa)/ 1 / 3 H•,(1) (•cr). (17)

The result (17) shows that a single mode ur,,(r, 0) decays exponentially with 0 at a rate
proportional to (ka)'/ 3 . For a noncircular boundary , the local decay rate can be obtained
by replacing a by the local radius of curvature a(s) and setting dO = a- (s)ds. Then the
exponent for the 'n-th mode becomes

iks + iei'/ 3
7- 1 k'/ 3 j (a(s'))-2/3 ds'. (18)

The amplitude of each mode also involves diffraction coefficients at the point B, where the
surface ray begins, and at the point B' where it leaves the surface. Then the total field in
the shadow is a sum of all the modes.

When a wave is diffracted by an axially symmetric object in three dimensions, the
diffracted waves have a caustic along the axis. This yields a bright spot in the cross-section

of the shadow. The wave field on and near this caustic can be expressed in terms of Bessel
fulnctions.

Now let us consider diffraction of a normally incident plane wave by a planar screen
of arbitrary shape, with a smooth boundary S. Instead of a bright spot, there is a bright
curved line in each normal cross-section of the shadow. The form of the bright line is
given by the C(voi'ute of the curve S, and it is a caustic of the edge diffracted rays. For a
planar curve, the evolute is the locus of centers of curvature of the nornals to the curve.
For example, for an ellipse the bright line is given by the Lamn curve, see Figure 3. To
summarize: an asymn)totic solution will usually consist of a sum of waves. Every wave
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is constructed by means of rays. They are obtained by solving the ray equations. Then

the phase S and the amplitude zo are found along each ray by the formulae given above.

The other Zm can be found as solutions of the appropriate transport equations. This same

approach is used in the next sections.

4 Surface waves on water of nonuniform depth

Previously we suggested that in water of nonuniform depth, we could determine the wave

motion by using the reduced wave equation. That suggestion yields the correct phase, but

not the correct amplitude. Therefore we shall now present an analysis which determines

correctly both the phase and the amplitude1 .

As before, we assume that the water is inviscid, incompressible and in irrotational
motion. It is bounded above by an unknown free surface Z = R[eiWtq(x, y)] (rq is the

complex amplitude of the surface wave motion of angular frequency w) and bounded below

by a rigid, non-uniform surface Z = -H(x, y). The exact linear theory of surface waves

yields for the free surface height

i(x, y) = 1(X, Y, 0),

where 4)(x, y, Z) is the velocity potential and g is the gravitational acceleration2 .

The velocity potential satisfies (see Stoker [5])

A4 = 0 in 0 Z -H(x, y), (19)

4)z = 04 On Z = 0 (0 = w 2/g), (20)

Dz + Hx., + Hy4y = 0 on Z = -H(x, y). (21)

In the constant-depth case, the solution decays exponentially with depth, so short waves
do not "feel" the bottom. To keep the influence of the depth variability, we rescale the

vertical axis by introducing

z = OZ, h =,8H, 0 (x, y, z) = 4)(x, y, Z). (22)

Then the problem (19)-(21) becomes that of finding solutions ¢ of the set of rescaled

equations

/20zz + OXX + Oyy = 0 in 0 Ž- z Ž_ -h(x,y), (23)

Oz = ¢ on z = 0, (24)

320z + hx¢x + hy¢y = 0 on z = -h(x, y). (25)

31t fails at the shoreline, where there is a boundary layer, see Section 5.
2 The reason for using upper-case letters is to save the lower-case ones for the rescaled variables.
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We seek solutions of (23)-(25) for large values of 0.

Motivated by the constant-depth solution, we express ¢ in the form

= A cosh [k(z + h)]eiS. (26)

Here k = k(x, y), S = S(x, y) and A(x, y, z,,3) are functions to be determined.

Plugging (26) into the system of equations (23)-(25) leads to

02 ((k 2 - (VS)2 )A cosh a + A, cosh a + 2kAd sinh a) +

+i-z3 ((V 2S)A cosh n, + 2VS V(A cosh a')) + V2(A cosh a') = 0, (27)

A, cosh kh. + kA sinh kh = A cosh kh. z = 0, (28)

02A, + i/3AVI . VS + Vh . VA = 0 z = -h. (29)

Here a = k(z + h) and V -- (a/Ox, O/Oy).

Next we assume that A admits the following asymptotic expansion for large 0:

oc

A(x, y, z,f3) "- Ao(x, y) + A, (x, y, z)/(if3)n. (30)
Tzlý

Again, motivated by the constant-depth case, we have assumed that the first term A 0 does
not depend on the vertical coordinate. 'We also assume that termwise differentiation in (30)
is allowed.

Inserting the asymnptotic expansion (30) into (27)-(29), and equating coefficients of the
corresponding powers of r, we obtain the following three systems of equations:

(VS)
2 =/,k2

(A1I) cosh ao + 2k(Ad ), sinh a 2VS V(AO cosh a) + A 0 cosh aV2S

(31)
(A.,,),- cosh a, + 2k(A,,). sinh o, 2VS V(A,-_ cosh a) + A,,-, cosh aV 2S+

+V 2 (A,_ 2 cosh a) (P., > 2),

Stanh/. = 1 (32)
(A,•:0 at. z=:0 (nŽ__ 1), (2

and, finally,

{ (A3)z = AoV, . VS at z = -/1,
(33)

(A,,,): = A,,-_j VI,. VS + Vi ,- VA,_ 2  at z = -h. (>, 2).
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The first equation in (32) determines k(x, y) as a function of the known depth h(x, y).
Then the eiconal equation (VS)2 = k2 can be solved for S(x, y) by the ray method discussed
in the previous lectures.

In order to find the amplitude A0 , we use the identity

(A.),, cosh a + 2k(A,)z sinha= ((A,),cosha) (34)

Inserting (34) into (31.2) we obtain

((A), cosh 2 a) =(2VS. VAo + AoV 2 S) cosh 2 a + AoVS. V cosh 2 a. (35)

Now we integrate (35) from 0 to z, using the boundary conditions (32.2)

(A1 )z cosh2 a = I (2VS. VAo + AoV 2S + AoVS" V) (k- 1 [sinh a cosh a - sinh kh cosh kh] + y).
(36)

Solving (36) will give A, up to an additive function of (x, y), if A 0 is known.

Next we set z = -h in (36) and eliminate (A,),, using the boundary condition (33.1).
This leads to an equation for Ao

2AoVh. VS = -(2VS • VA0 + AoV 2S)(sinh 2 kh + h) + AoVS. (Vh - Vsinh2 kh). (37)

Equivalently, (37) can be written

VS. V (Ao2(sinh 2 kh + h)) + (Ao2(sinh 2 kh + h)) V2S = 0. (38)

We note that VS . V = k(d/dT), where T measures arc-length along a ray. Then the
solution of (38) can be written in the form

A2o(sinh 2 kh + h) = [A2(sinh 2 kh + h)]ro exp (- klV2SdT (39)

In [4], Luneberg has shown that the exponential above is given by

exp (-7-k-/ V 2Sd_ - k(To) da(To) (40)
10 ) k(r) da('r) (

Here da(r) is the width of an infinitesimally narrow strip of rays at T. Plugging (40) into
(39), we finally get the following equation for A 0 along a ray:

A0(sinh 2 kh + h)k da = const. (41)

Equation (41) simply expresses the fact that the energy flux is constant along a tube of rays.
By using (41) for Ao(x,y) in (26), we get the leading term in the asymptotic expansion of
¢ in water of variable depth.

The amplitude A 0 is infinite at the shoreline, where h = 0. This means that there is a
boundary layer at the shore. To analyze the solution in this layer, we use the shallow water
theory, which is introduced in the next section.
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5 Shallow water theory

The main reference for this section is Stoker's famous monograph [5]. For simplicity, we
consider the 2-dinensional case with horizontal x-axis and vertical z-axis. The free surface
is given by z = 71(x, t), while the bottom is z = -h(x). The equation of continuity for the
components 'u(x, z, t) and v(x, z, t) of the water velocity is

uT + Vs = 0. (42)

At the free surface we have both the kinematic condition

(?It + MIrX - v) Iz:= = 0 (43)

and the dynamic condition

p 0. (44)

The bottom boundary condition is

(1,t,1" + v)70--h - 0. (45)

Integrating (42) gives

"/ ['dz + v 0. (46)

Using the top and bottom boundary conditions in (46) leads to

, 'udz + ?It +±v, 1 * 71X + u -" x = 0. (47)

We can rewrite (47) as
S 'udz = -?it. (48)

Notice that up to this point no approximation has been introduced. The sole approxi-
ination of the shallow water theory is to ignore the vertical acceleration. This is assumed
because the waler is shallow. Hence the pressure is given as in hydrostatics, namely

p = .qp('11 - z). (49)

Here p is the water deinsity and y is the acceleration of gravity. Differentiating (49) with
respect to x: gives

Px = Yp7IX (50)

Note that since 71,, is independent of y, so is p,..

Next, we assume that tt is independent of z at t 0 (This is true if the water is
initially at rest). This will imply that ', is independent of z at all times, since its horizontal
acceleration p 1 p2 , does not depend on z either, as (50) shows. Then (48) becomes

[171(01 + .)],: = -?i, (51)
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Evolution of the solution 4

Multivalued solution

Bore

Figure 4: The "bore" formation.

The Eulerian equation of motion for u(x, t) is

ut + uu, = -gi?,. (52)

Eqs. (51) and (52) constitute the (nonlinear) shallow water theory for determining u and

When u and r7 and their derivatives are small enough, we can linearize (51) and (52).
This yields the linear shallow water theory, in which u and q satisfy

Ut -gx,(53)

(uh)x = -qt-.53

Eliminating 77 from (53) yields

(hu)x- (hu),, = 0. (54)
gh

We have multiplied and divided by h(x) to get the linear wave equation for the quantity
(hu). The propagation speed is vgh. If It = const, (54) is a linear wave equation just for u.
The linear shallow water theory is used for the tides, where large wavelengths are involved.

The equations of the nonlinear shallow water theory admit an interesting analogy with
the differential equations of gas dynamics. Let us define fi, the mass per unit area, by

p(77 + h). (55)

ý,From (55)

P .= P t. (56)
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Then the force per unit width = frhpdz is given by

= (TI + /)I P= .(57)

Now we multiply (52) by p(71 + h) to get

p(71 + h)(u, + uu,) = -gp(i + h)ri. (58)

Then using (55) and (57), we can write (58) as

p(Z,. +•± w) = -. + gj.,. (59)

In terms of p, we can write (51) as

(f.)x= -P,. (60)

The equations (57), (59) and (60) are exactly the equations for the one dimensional flow of
a compressible gas with adiabatic exponent -' = 2 and an external force 9ph, . This force
vanishes when the depth is uniform. The sound speed is

g = it = v(( ). (61)

This is the speed of a small disturbance.

As in gas dynamics, the solutions of the nonlinear shallow water equation cease to be

single valued at a finite time for certain initial conditions. They can be made single val-
ued by introducing a discontinuity, called a "shock" in gas dynamics, and a "bore" in water
waves. See Fig. 4. Such discontinuities can be observed in some rivers, and in kitchen sinks.

Notes by Khoaehik Sarysyao, andd Walter" Pauls.
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Lecture 5: Amplitude Dynamics, Boundary Layers, and

Harbor Resonance

Jospeh B. Keller

1 Amplitude Amplification at the Shore

We will now consider the consequences of ray theory for the amplification of wave ampli-
tudes near a shoreline. In the deep ocean, tsunami waves have small amplitude and long
wavelength, on the order of tens of kilometers. But when they reach the shore, as mentioned
in the last lecture, they can grow to towering heights. We can gain insight into the nature
of this amplitude growth using the linear methods of the previous lecture.

We will consider the evolution of a wave train incident on a sloping beach. Let the depth
be a linear function of distance from the shore

h = xtana - ax, a < 1 (1)

Following the method of the previous lectures, factor the velocity potential into a horizontal
oscillation and a vertical mode shape

¢ (x, y, z) = A cosh (k(z + h)) eiOs(x'y). (2)

Consequently,

(VS) 2 = k2 (3)

ktanhkh = 1. (4)

We now specialize to the case of one dimensional long waves. These are waves with long
wavelength compared to the depth and wavefronts parallel to the shore. Mathematically,
these assumptions imply

kh < 1 (5)

S = S(x). (6)

In this limit, Equation (4) becomes
k2h = 1, (7)

which implies
1

k= v (8)
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Therefore, as the waves approach shore and h, -- 0, k - oo and the wavelength decreases
to zero. The parameter kh, however, remains small throughout:

1
kh = -* 0

k

Incidentally, the one dimensional wave approaching parallel to the shore is the most
physically relevant case. Recall from Lecture 3 the equation for the path of characteristic
curves

-'VS =-\Vn2 (X). (9)
da 2

Using n 2(x) = h0/h(x), we have

d _ h0od VS - ho(x V /1'. (10)

Since VS is parallel to rays, and -Vh. points in the direction of the shore, this equation
shows that rays curve in the direction of the shore. Figure 1 illustrates the intuition behind
this result. As a wave approaches a beach at an angle, the section of the wavefront further
from the beach is over deeper water, and therefore has a relatively faster wave speed. Ac-
cordingly, the wavefront will swing towards the shore until it is parallel with the beach, and
all points on the wavefront have the same wave speed. For this reason, the one dimensional
formulation is adequate to investigate the late stages of a wave's approach to the shore.

The reduction to one dimension also makes it easy to comlpute the phase. We have

as

1

1 (
x •* tan (11

Though the derivative is singular at x 0, it is integrable and we can compute the phase

S~x d~x'

xdx'

2x 1/2S-± 4-+C (12)

We. choose the minus sign to be consistent with waves moving toward the shore.
We are now p)repared to compute the amplitude evolution. Because the rays are straight

lines in one dimension, the ray tube area da = constant. We showed in Lecture 4 that

A• (sinh 2 k/i + h) kdo = constant.
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... - Shallow water Slower wave speed

S...Deeper water -- Faster wave speed

Arrives parallel to shore

Figure 1: Waves on a sloping beach are refracted so as to approach with wavefronts parallel

to the shoreline
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Therefore,

1k (h + sinh 2 kh)

1 
(13)

(k2(,. 2 + h)/

Using equation ( 8), we have
C/ C

AoC- / - (14)
-11/ XI/4'

Thus, the theory predicts wave amplitudes going to infinity at the shoreline. That's why
tsunamis do so much damage.

This result seems natural considering that we have held the example of a tsunami in
mind as we derived it. But one might ask what, in this theory, differentiates tsunamis from
any other wave? The ocean is full of waves satisfying kh << 1 that reach shore without
catastrophic consequences. Clearly, something is wrong with the theory very close to the
shore.

A typical trouble with asymptotic theories is the presence of certain regions where the
solutions become singular. In these regions, the asymptotic expansions fail. We need a
different theory that applies in this singular region. which we call a boundary layer. If all
goes well, we will be able to find a solution that applies in the boundary layer and that
blends continuously into exterior solution we have just derived.

2 Boundary layer and shallow water equations

2.1 The concept of the wave boundary layer

The asymptotic analysis based on the linear wave theory discussed above, which was asymp-
totic in the sense that the depth and wavelength were small compared to the characteristic
horizontal scale, proved to be successful for deep water waves (see the previous lecture and
[3]). However, the theory fails in the proximity of the shore, yielding an infinite amplitude
there. Wave propagation near the shore can be analyzed by means of the shallow water
theory and the boundary layer concept.

The idea, is to use the shallow water equations in the vicinity of the shore, where the
depth is small, and the wavelength is large compared to the depth. It is worth noting,
however, that shallow water theory is applicable over large regions of ocean basins, if we
study phenomena on the synoptic scale, large (L P 100 kin) compared to the mean depth
of the basin (H • 500 - 1000 in), see e.g. [4].

First of all, we will ruminate for a while on the derivation of the shallow water equations,
formulated for an incompl)ressible fluid in an inertial frame - Coriolis acceleration will not
be included.

Naturally, at this point anyone merely conversant with physical oceanography I would
ask about the relevance of linear shallow water theory to the reality which occurs on the
noninertial frame of the rot ating Earth, where the the Coriolis acceleration should be taken

land wc assume that some of our readers belong to this group
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into account. In fact, this effect is crucial in studies of tidal phenomena as well as for
the more general model of Poincare waves (the latter problem being formulated in the
shallow water approximation in the synoptic-scale ocean gives dispersive waves). However,
neglecting the coriolis force may be justified in two classes of wave problems:

"* waves propagating in lakes and small, shelf seas (i.e the Baltic sea) where the long
(with respect to the basin depth) waves are locally generated by a strong wind yet
they are short enough not to be effected by the Coriolis acceleration,

"* Shoaling waves approaching normal to a shoreline. Then the waves, irrespective of
whether they were nondispersive or dispersive far from the shore due to the Coriolis
effect, undergo shoaling on scales on which the Coriolis effect does not contribute.

3 The structure of the boundary layer

While toying with the idea of the horizontal wave boundary layer t for the problem
of waves approaching the shore and affected by its presence, we could attempt to find an
analogy with the vertical terrestial and oceanic boundary layer (table 1). By this analogy,
we may expect that the solution obtained for the wave boundary layers may be matched
at the borderline between the boundary layer and the outer one, just like in the case of
vertical boundary layers.

3.1 Shallow water equations

We consider long waves propagating in relatively shallow water in an inertial frame of ref-
erence. We assume two-dimensional motion in the (x, y) plane. The equation of continuity
for an incompressible fluid is:

uX + Wz = 0, (15)

The kinematic condition and the dynamic conditions at the free surface are:

(77 + u'qx - W)1,=1 = 0, PIz=z = 0 (16)

The kinematic condition at the bottom is:

(uh + W)Iz=-h 0, Plz=n 0 (17)

It is convenient to formulate the problem in terms of the depth integrated horizontal velocity,
namely:

-9 udz, 
(18)

using the boundary conditions and the Leibniz rule of integration:

- udz = -rt (19)
9x J-h

In the shallow water theory the hydrostatic pressure approximation is used. That is, vertical
acceleration is ignored. Then, the pressure at a point is determined entirely by the weight
of the water column above it:

P = gp( - z) (20)
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vertical (terrestial/ocean) horizontal (wave)

ground/free water surface/ice shoreline

shore wave boundary layer D where the shallow water theory
applies; for the sake of use of asymptotic methods, 0 can be

Prandtl layer further divided into inner shore wave boundary layer Oi in
the immediate proximity of the shoreline and the outer shore
wave boundary layer 0,

the outer layer where the shallow water might also apply

Eknman layer but the Coriolis term should be taken into account causing
waves to be dispersive

the oultermost layer where gravity deep water wave theory
fr ee flow (geostrophic layer) applies

Table 1: Boundary layer structure and the analogy between vertical and horizontal bound-
ary layers.

38



The horizontal pressure gradient is then P. = gp7,. From the equation of motion in the x
direction, ut + uux = -gix, the horizontal acceleration is independent of depth. Therefore

so is u, provided that it was initially independent of z. The depth integrated u is now

f-h udz = u(q + h). Using this, we obtain the nonlinear shallow water equations:

Ut + uuX = -gx (21)

(u(h + 7),= 7t,(22)

Where n, = n(x,t), u = u(x,t), h = h(x). If we assume that u, q/ and their derivatives

are small, their products can be neglected compared with linear terms. Then (21) and (22)
yield the linear shallow water equations :

Ut = -g7X (23)

(uh)., - 77t (24)

Eliminating 7 from (23) and (24) gives
1

(uh)x - -utt = 0. (25)
g

3.2 Linear SWE and the variable depth - asymptotic approach

Since h = h(x) is independent of t, we can rewrite (25) as

(uh)xx - 1 (uh)tt = 0. (26)

This is the wave equation for a variable U* = uh with propagation velocity c fg-h(x).
For time harmonic waves U*(x, t) = U(x) exp(-iwt), (26) becomes the Helholtz equation:

w2

u + vU = 0. (27)
gh(x)

We now define k = w/ gh-, n(x) 2 = gho/gh(x), in terms of a typical depth h0 . Then we
can rewrite (26) as

Urx + k2n2 (x)U = 0. (28)

Away from the shoreline h(x) = 0, the asymptotic form of U(x, k) for kho >> 1 is

U(x) ýZzin(x) exp (ik Sin(x)) + Zr(x) exp (ik St (x)). (29)

Here Zin(x), Sin(x) and Zr(x), SV(x) are the amplitudes and phases of the incident and
reflected waves, respectively. We call (29) the outer asymptotic expansion of U. It

is not valid where h(x) = 0 because Z"n(x), Zr(x) become infinite there. To determine
U(x) near the shore, we define x' = kx and V(x',k) = U(x,k). Then h(x) = h( )k

h(0) + hx(0)(-•) + 09(k- 2). Then at the shoreline x = 0 we get h(0) = 0 and we define a,
the slope of the bottom, by tan a = hx(O). Then n(x) 2 = ho/h(x) = (kho)/(x' tan a) + 0(1)
and (28) becomes:

V1X,,+ t h ' + 0(1))V = 0. (30)
tan ax
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When we neglect the 0(1) term, (30) becomes a form of the Bessel equation. Although the
coefficient of V is singular at x' = 0, the equation has a solution which is regular there. It
is

V(x',k) = x/J( - XT ) (31)
St an ca

Here, A is an arbitrary constant. Then the solution of (31) vanishes at x' = 0. There is
also a solution which is infinite at x' = 0. The asymptotic solution of (31) for x' large is:

(2 (2VFOkit 0 ')V(x', k) - A(Vx7')e' tan o + B(Vx')e- tan 0  , (32)

This can be matched with the outer expansion (29). The system of linear, variable depth
shallow water equations is satisfactory for small amplitude waves. It does not capture effects
like breaking, for which the nonlinear theory is needed.

4 Nonlinear Wave Propagation Along Rays

In these lectures, we have discussed the linear theory of waves in some detail. It would be
a shame not to discuss nonlinearity a little further. For decades, models of water waves
have been an interesting source of nonlinear equations. One of the most famous of these
equations is that of Kordeveg and de Vries, which was derived to model the cumulative
effect of nonlinearity in water waves travelling over long distances.

In this section, we will derive KdV in the context of a ray tracing theory for nonlinear
long waves on a. layer with spatially varying depth. In linear theories, the amplitude typically
takes the form of a nearly sinusoidal wave train with amplitude and wavenumber slowly
varying along a ray. Instead, we will find that the amplitude is governed by an equation of
KdV form. Specifically, we will consider the equations for a disturbance on the surface of an
incompressible flow of constant density without rotation. This computation is a simplified

presentation of a more general analysis presented in [5], in which the effects of bottom
topography, incompressibility, rotation, stratification, and a polytropic equation of state
are taken into account. By including only one dimensional bottom topography, we will be
examining the simplest case in which nontrivial amplitude dynamics occurs.

4.1 Scaling the Equations of Motion

We begin by introducing a carefully chosen scaling of the equations of fluid motion. The
key method of asymptotic analysis is to rescale equations to introduce small parameters,
thus allowing complex problems to be considered as a sequence of simpler problems. The
art of this method is to tailor one's scaling to access a physically interesting limit. In this
case, the scaling will pertain to waves with wavelength long compared to the depth of the
layer, propagating over long distances.

Let us consider a layer of incompressible fluid in two dimensions bounded above by the
free surface z = 71"(*, t*) and below by the rigid surface z* = -h* (x*). Before writing the
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equations of motion, we introduce stretched dimensionless variables x,z,t, etc., as follows:
, = (H) 2/ 3  (x*,z*) - H (&-3 /2x, z)

h* = Hh, 7"7* H,p* = gHpop, t* = E-3/2t ( H)1/2 (33)

(u*, W*) = VH (u, E1/2W).

and v = (u, w). Here, L is a typical horizontal scale of variation, so E is determined by the
characteristic aspect ratio of the motion.

In these stretched variables, the equations of motion take the following form:

9w Ou--- + Ex = 0, (34)

an an az ax (4(a 19U O ap ) au 0
+ U7+ + +W- = (35)

at ax ax) az (5
2 aow Dw'\ Dv %

- -+ u-,- +Ew-L-z+-zz+1 = o. (36)
at ax, ) Dz a9Z(6

The kinematic condition and the normal force balance at the free surface are, respec-
tively,

a07  a?709q + U - w, (37)

p = C) (38)

evaluated at z = q(x). The kinematic condition at the lower boundary is
ah

W = -EU (39)

evaluated at z = -h(x).
When E = 0, equations ( 34) - ( 39) have, as a solution, the state of rest given by

vo = 0, (40)

PO = C-z (41)

70 = 0. (42)

To find approximate solutions for c • 0, we introduce a phase function S (x, t) and the
"fast" variable ý = E-iS. We then express v, p, and 7, as functions of ý as well as of x,z,t,
and E. We also assume that these functions posses asymptotic expansions in E of the form

v (ý, t, x, z, 6) - vO (t,x,z) + Ev1 (ý,t,x, z) + Ev . .. , (43)

where the variables with subscript 0 are the rest state solutions given above. Under this
change of variables, the derivatives transform as

0 a + 1Sa a(44)ax a x+ 09'

a _ at -

41 --+-sL (45)



Since, - 0, the equations of motion become

Ou au OwS+ Sx--• + -z= 0, (46)
Ox ap Oz

C ( +±'u,'±a + )-a -+ (St + SuSx) au + sx + W au= 0, (47)
(&W axN ax) a DW\Dpa

2•÷ -+ U-)+f(W l + (St-+-'uSX)-W +-P+I = 0. (48)
at ad, 49Z D/ ax

The boundary conditions become

S+U - +_(s + Usx) -_ = 0, Z = 77, (49)

Oh,
w + C7-al = 0, z = -h. (50)

ax

We will now substitute the asymptotic series forms into these equations and equate
coefficients of successive powers of c. Additionally, we transform the boundary conditions at
z = ij into boundary conditions at z = 0 by writing the boundary terms as a taylor expansion
around z = 0. In this way we obtain sets of equations for the successive determination of S
and of the various coefficients in the asymptotic expansion of the solution.

Equating the coefficients of order c yields

S'u + Ow - 0, (51)

St O'+S, . - 0, (52)

a__ - 0, (53)
Dz

S -- )l = 0, z=0, (54)

P] = 711, z = 0, (55)

wUY = 0, z = -h.. (56)

4.2 Modes Structure and the Eiconal equation

We can solve equations ( 51)-( 56) for the structure of wave solutions at leading order.
A PDE governing the phase function S will emerge as a solvability condition for these
equations, and will be seen to be equivalent to the eiconal equation of shallow water theory.

First, we eliminate 71, and 'v] using equations (51) and ( 55) to write

Dl = aP - (57)

Du1 - 1 D'w7(58)
S" Oz
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Equality in equation (57) holds for all z by equation (53). The system simplifies to

St awl pS + S. - 0, (59)

'zPi 0, (60)

0OP-•-W = 0,z=0, (61)

w = 0, z -h. (62)

In order to solve these equations, we seek a product solution of the form

P1 = A(6,t)O(x,z), (63)
9A

w1 = -St-OAO(x,z). (64)

These forms are analogous to that used in Lecture 3, the well known WKB ansatz. In
those cases the solution consists of a rapid sinusoidal oscillation with a slowly varying

amplitude. In the present case, we also imagine the solution will take the form of a rapidly
oscillating waveform, represented by A(ý, t), with a slow modulation and vertical structure
represented by 0 and 0. However, because of nonlinearity, the fast waves do not take the

form of sinusoids. Rather, the appropriate wave shape will emerge from the analysis.
Substituting these solution forms into equations ( 59)-( 62) and simplifying yields

02(xt) 00 (65)
4z '

-0, (66)

= -, z = 0, (67)

,= ,z=-h. (68)

where

(Xt) = St2 (69)

This is a first order system of ordinary differential equations in z in which x and t appear
only as parameters. For the system to have a solution, we must have

- = h. (70)

A particular solution of the system is then
o9A z 1

= *g&A9 p )(Z ( ) (71)

-ux=-- A, (72)?•1-- Sxh

p, = AOb(x), (73)

ql = Ag(x). (74)
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Note that, in principle, /) may have an arbitrary x dependence, and ul . This freedom

corresponds physically to the fact that an arbitrary slowly varying order E height field could

be added to 7?, and an arbitrary order c velocity field U(x, z, t) could be added to ul, that
would have to be balanced only at higher order due to the form of equations ( 34)-( 39).

Since we are not interested in the interaction of waves with higher order mean flows, we
will assume U = 0 and o = 0.ax

Equation ( 70) is the same as the eiconal equation computed when we derived shallow
water theory. To solve this equation we can use the method of characteristics, as in the
previous lectures. It is interesting to note that the modes and rays we have computed are

the same as those determined by the lincar theory of wave propagation. It is only in the
determination of the amplitude A(ý, t) that nonlinearity plays a role, and to that we now

turn.

4.3 Amplitudes

To determine the equations governing the amplitude function A(ý, t), we must analyze the

set of equations obtained by equating the coefficients of order '2 in equations ( 34)-( 39).
Doing so, we obtain

0'112 O'U2 _ 0u'a (75)SOý Oz 0:'r

sOyU2 01)2 - Ou, O'"1  Oul OpI (76)t Oa St Or Ox
019)2 - S, 1 (77)Orw

0S, 2 _ a1 U, - , 7 Ow = 0, (78)

__ O? Oz
_ api

P2 = 72--712 7-2, Z= 0, (79)
O r

__L, O h0z __ - (80)

(81)

This system is an inhomogeneous form of equations ( 51)-( 56), with forcing given by the

solutions com)puted at lower order. Substituting in the solutions found in equations ( 71)-
74) yields

S t  wu 72 + OP2

O- = G2 ( , z, t), (83)

OP2 _

St W2 = G 3 -',xt), Z = 0, (84)

Oh,
"U'2 =4 s-. = (85)
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where

St OA _ s 2 aA
S, h at h A-'

G2 22A (z +(1), (87)
G3- A h2 OA

G + 2St--A--A (88)

As before, we seek a solvability condition for this system. This time, the condition will
impose a constraint on A that will allow us to solve for the amplitude along rays.

Begin by solving ( 83) for P2:,

P2 = j zG 2dz' + P (ý, x, t). (89)

Inserting this solution into equation (82) and integrating over z gives

IW2= Gfdz' + dzfdz- x-5-z±DQ ,,t). (90)
St -h St i-hi-h StO D

Applying the boundary condition at z -h gives

09P St ah •St- D + (91)

Finally, applying the boundary condition at z = 0 gives the constraint

SX 0 s2 0ff ' _OG 2 d, St Oh
G, dz' + ± dz"dz' = -G3 - St - dz + 5-0A. (92)

By substituting for G1, G2, and G3 into (92), and making extensive use of equation (70),
we find an equation for A:

OA. _ [3'0 1 A [ a3] 0A 1S A h + [-I hSA (93)
A I Oý [6 t j 3

The sign of the right hand side is determined by the branch of the solution to the eiconal
equation that is selected. It is negative for rightward travelling waves, and positive for
leftward travelling waves.

Equation (93) is of KDV form, with a linear growth term reflecting the expansion and
compression of ray tubes in space-time. Note that

1 dh d

2vh- dx dx

is the gradient of the ray speed, and thus reflects expansion and contraction of ray tubes.
For a rightward travelling wave travelling into deeper water, 87. > 0, ray tubes expand, and
equation (93) predicts the decay of A along a ray.
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Figure 2: The configuration of the cavity resonator.

Let us now examine the case of constant depth, in which equation (93) reduces to the
form DA DA D3A(9A _AIA c9 + A93A= 0 (4

__=0(94)

where A, and A2 are constants. If we seek travelling wave solutions of the form A(v), where
v = t- , we find the ODE

-cA' + AIAA' + A2A"' = 0.

One p)eriodic solution to this equation is the Jacobi function,

A = am (A-' (ý - et))

These are "cnoidal" waves. They resemble cosines, but with flatter troughs and sharper

peaks. Furthermore, the wavesl)eed c is a function of the amplitude a.
It is helpful to be quite clear about the physical picture of wave propagation that has

emerged from this analysis. Due to the eiconal equation ( 70), surfaces of constant {

p)ropagate with the shallow water wave speed ii,. The amplitude equation has solutions
that l)rolpagate rclative to surfaces of constant ý. Thus, for example, the full propagation
velocity of the (noidal wave solutions above is v = v\, + c(a). It is possible for these
nonlinear disturbances to travel at, supercritical speeds.

5 Closed and semiclosed basins

Asymptotic methods will now be applied to determine waves in semiclosed basins linked
to the ocean by a small opening. such as harbors and marinas, subjected to the wave field
incoming from the open ocean. The configuration considered here is a semicircular cavity,
with the origin at the centre, as shown in figure 2. The boundary F consists of a circular arc
with r = a and two straight lines. The opening, of half-width s, is small compared to the
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radius of the cavity. The system is a two-dimensional version of an acoustic Helmholtz
resonator, and will lead to harbour resonance. The problem may be stated as follows:
given a prescribed potential at infinity 0,, corresponding to a plane wave incident at an
angle a, that is 05, = e k(xcos,+ysin ), find the potential O(x, y) satisfying:

V2 +k2 0 = 0

n F (95)
o~n

Sas r- oo

Here 0, is an outgoing wave potential. The problem can be solved numerically, but to get an
analytic insight into the behavior of the solution, we shall adopt the asymptotic approach
presented in [2]. For a small opening ks << 1, the disturbance due to the cavity as seen
from afar is that of a point source of some strength m. Therefore, we can write:

0,= , - (1/4)imH(1) (kr). (96)

Expanding the Hankel function in (96) for kr -* 0:

¢ 0.(0, 0) - (1/4)im[1 + (2i/7r) log((1/2)•'kr)] + O(mk2r 2 log(kr)), (97)

where logs' 0.577.. is Euler constant. Note that 0,,(0,0) = 1 and define 00 = 1 -
(1/4)im + (m/27r) log((1/2)Z'ks). Three asymptotic expansions are needed.

1. The outer expansion 0out, valid in the infinite region away from the opening. The
opening appears as a source and the solution is:

¢o~t -400 + (m/27r) log(r/s), r/s << 1, (98)

2. The potential in the cavity:

€in(x, y) =-m qc(x, y). (99)

Here /c is a mode of the closed basin. As r - 0:

OC -- (27r)- 1 logr + const. (100)

ZFrom the first two equations in (95), the solution Oc is given by:

4 0c = Yo(kr) YO(ka) Jo(kr). (101)
JO(ka)

3. A potential Oc in the neighborhood of the opening, obtained by conformal mapping
(see [2]).

Matching OG to the expansion in the cavity, and to that outside of it, gives the source
strength m in terms of the conductivity C. The source strength m corresponds to the
flux through the opening, given by m = C(¢ji - tout), where C is the conductivity of the
opening.

47



With the value of ") determined, the value of the potential on the cavity wall is:

-2ka J'(ka) •ika Y'(ka) + J'(ka) [i - (1 + lo(0(2ks))

An example of the potential response, given by (102) and (99) for a large cavity for three
different opening widths (characterized by the values of s) is presented in figure (3a). The
peaks of the response occur when the term in the denominator in (102) is small. Due to
the oscillatory behavior of the Bessel functions, this coincides with zeros of either Jl(ka) =
- J(ka) or Y1 (ka) = -Y((ka) [1] see also figure (3b). In case when ka is small, the Yo' term
dominates, and this corresponds with the highest peak in figure (3a), which defines the
Helmholtz mode. For the larger values of ka the J( term takes over and condition J = 0
determines the position of the natural eigenmodes of the closed cavity. For the cavity with
small opening, the response is modified by the effect of the - log(ýks) term, large when ks
is small. We can also observe the influence of the opening size s: reduction in the size s
moves the Helmholtz peak to smaller frequency and increases the amplitude of the response.

These results, obtained by asymptotic methods were tested in [2] against numerical
solutions. They provide a theoretical explanation of harbor resonance, a phenomenon of
practical importance in ocean engineering.

Notes be Alex Hasha and Inlga Koszalkoa.
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Figure 3: (a) Response, given by (102) and (99) for a large sector cavity, with unit source

strength m = 1, for three different values of the opening width S. (b) The shape of the
bessel functions - J1(ka) =JO'(ka) and -Y, (ka) =YO'(ka) for different values of ka.
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Lecture 6: Wiener Process

Eric Vanden-Eijnden

Chapters 6, 7 and 8 offer a (very) brief introduction to stochastic analysis. These
lectures are based in part on a book project with Weinan E. A standard reference for the
material presented hereafter is the book by R. Durett, "Stochastic Calculus: A Practical
Introduction" (CRC 1998). For a discussion of the Wiener measure and its link with path
integrals see e.g. the book by M. Kac, "Probability and Related Topics in Physical Sciences"
(AMS, 1991).

1 The Wiener process as a scaled random walk

Consider a simple random walk {X, }nEN on the lattice of integers Z:

*.
-, k (1)

where {f}kckN is a collection of independent, identically distributed (i.i.d) random variables
with N([k = ±1) = 1. The Central Limit Theorem (see the Addendum at the end of this

chapter) asserts thai

XATX/A ] N(O, 1) (- Gaussian variable with mean 0 and variance 1)

in distribution as N -- oc. This sug(gests to define the piecewise constant random function
117 on it E [0, 0o) by letting

1 = - X[Nt] (2)

where [Nt] denotes the largest integer less than Nt and in accordance with standard no-

tations for stochastic processes, we have written t as a subscript, i.e. WtN - WN(t)

It, can be shown that as N - oc, 1/1, A converges in distribution to a stochastic process
Wt, termed the liecn7r" process or Bronia n. imotionl1 , with the following properties:

(a) Indepecndece. 14, - 147, is independent of {fTI}.<s for any 0 < s < t.

'The Brownian not ion is terined after dhe biologist Robert Brown who observed in 1827 the irregular
nlot ion of pollen particles floating in water. It should be noted, however, that a similar observation had been
made earlier in 1765 by the physiologist Jan ]ngenhousz about carbon dust in alcohol. Somehow Brown's
name became associated to the phenomenon, l)ro ay l)because lngenhouszian mot~ion does not sound very
good. Some of us with complicated names are moved by this story.
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Figure 1: Realizations of WtN for N 100 (blue), N = 400 (red), and N = 10000 (green).

(b) Stationarity. The statistical distribution of Wt+, - W, is independent of s (and so
identical in distribution to Wt).

(c) Gaussianity. Wt is a Gaussian process with mean and covariance

EWt = 0, EWtW, = min(t, s).

(d) Continuity. With probability 1, Wt viewed as a function of t is continuous.

To show independence and stationarity, notice that for 1 < m < n

n

Xn - Xm = E G
k=m+l

is independent of Xm and is distribute identically as Xn-m. It follows that for any 0 < s < t,
Wt - W, is independent of W, and satisfies

wt - w, = wt_8, (3)

where means that the random processes on both sides of the equality have the same
distribution. To show Gaussianity, observe that at fixed time t > 0, WtN converges as
N --* oo to Gaussian variable with mean zero and variance t since

WtN XLNtj X[Ntj V[N- N( d,1)V/4 g(o,t).
t vf- ,[-Nt] /- ,NO N(0t)

In other words,

P(wt E [XI, X21) = I p(5, t)dx (4)
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where
- /2t

In fact, given any partition 0 < t <_ t2 < "" <_ tn, the vector (Wt,"..., Wn) converges
in distribution to a n-dimensional Gaussian random variable. Indeed, using (3) recursively
together with (4),(5) and the independence property (a), it is easy to see that the probability
density that (W47t1, ... , WIt) =( 1, . . . , x,) is simply given by

P(X,,- ýn - I , tn - t -_I) ... P(X2 - X1, t2 - tl)P(xl, t1) (6)
A simple calculation using

IElv j T xp(x, t)dx, IEWllt 14W8 =f yxp(y - x, t - s)p(x, s)dxdy.

for t > s and similarly for t < s gives the mean and covariance specified in (b). Notice that
the covariance can also be specified via

E(qt - j_ )2 =- - sl,

and this equation suggests that WlVt is not a smooth function of t. In fact, it can be showed
that even though 1t' is continuous almost everywhere (in fact H6lder continuous with
exponent -Y < 1/2), it is differentiable almost nowhere. This is consistent with the following
property of self-similarity: for A > 0

11t d A1l/21 7At

which is easily established upon verifying that both 141 and A-1/21A7,t are Gaussian processes
with the same (zero) mean and covariance.

More about the lack of regularity of the Wiener process can be understood from first
passage times. For given a > 0 define the first passage time by T, inf{t : Wt = a}. Now,
observe that

P(Wt > a) = P(T, < & 11. 7t > a) = ½(T 0 < t). (7)

The first equality is obvious by continuity, the second follows from the symmetry of the
Wiener process; once the system has crossed a it is equally likely to step upwards as down-
wards. Introducing the random variable Mt = supo<,<t 147, we can write this identity

,S00 a -z2/2t

W(M1, > () = P(i, < t) = 2P(1/Wt > a) 2 -- 7-tdz, (8)

where we have invoked the known form of the probability density function for Wt in the
last equality. Similarly, if rnt = info<.<t 14/W,

lP(Tn < -a) = I(Mt > a). (9)

But this shows that the event "11t crosses a" is not so tidy as it may at first appear since
it follows from (8) and (9) that for all E > 0:

PA(Mg > 0) > 0 and P(rn, <0) > 0. (10)

In l)artic:ular, t = 0 is an accunmlation point of zeros: with probability 1 the first return
time to 0 (and thus, in fact, to any point, once attained) is arbitrarily small.
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2 Two alternative constructions of the Wiener process

Since Wt is a Gaussian process, it is completely specified by it mean and covariance,

EWt = 0 EWtW, = min(t, s). (11)

in the sense that any process with the same statistics is also a Wiener process. This

observation can be used to make other constructions of the Wiener process. In this section,

we recall two of them.

The first construction is useful in simulations. Define a set of independent Gaussian

random variables {f7k} kEN, each with mean zero and variance unity, and let {fk(t)}kErq be

any orthonormal basis for L 2 [0, 1] (that is, the space of square integral functions on the unit

interval). Thus any function f(t) in this set can be decomposed as f(t) = ZkEN akqk(t)

where (assuming that the Ok's are real) ak = f6 f(t)0k(t)dt. Then, the stochastic process

defined by:

Wt = Er7 kk(t')dt, (12)

kEN

is a Wiener process in the interval [0, 1]. To show this, it suffices to check that it has
the correct pairwise covariance - since Wt is a linear combination of zero mean Gaussian
random variables, it must itself be a Gaussian random variable with zero mean. Now,

EwWw= Ek777 j Okk(t)dt' J (s')ds'
k,1E N (13)

Z j k ck(t')dt' 4o Ok(s')ds,
keN

where we have invoked the independence of the random variables {fqk}. To interpret the

summands, start by defining an indicator function of the interval [0, T] and argument t

M iftE[0, T]
XT(t){ 0  otherwise.

If T E [0, 1], then this function further admits the series expansion

XT(t) = k (t) j0 k(t')dt'. (14)
k

Using the orthogonality properties of the {fk(t)}, the equation (13) may be recast as:

EWtWs= JOE•0 ( JotOk (t') dt'Ok (U) J0,9 01(st)ds'01(u) ) du

fo1

= Xt(u)Xs(u)du (15)

J Xmin(t,s)(u)du = min(t, s)
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as required.
One standard choice for the set of functions {kk(t)} is the Haar basis. The first function

in this basis is equal to 1 on the half interval 0 < t < 1/2 and to -1 on 1/2 < t < 1, the
second function is equal to 2 on 0 < t < 1/4 and to -2 on 1/4 < t < 1/2 and so on. The

utility of these functions is that it is very easy to construct a Brownian bridge: that is a
Wiener process on [0, 1] for which the initial and final values are specified: W0 = W, = 0.
This may be defined by:

YýVt = Wt - tW 1 , (16)

if using the above construction then it suffices to omit the function ¢1 (t) from the basis.
The second construction of the Wiener process (or, rather, of the Brownian bridge), is

empirical. It comes under the name of Kolmogorov-Smirnov statistics. Given a random
variable X uniformly distributed in the unit interval (i.e. P(0 < X < x) = x), and data

{X1, X 2 ,... X,}, define a sample-estimate for the probability distribution of X:
1 1n

Fn (x) = n-(numbern Of Xk < x, k =,..,n) = n E X(-.,'x) (Xk), (17)
k=1

equal to the relative number of data points that lie in the interval xk < x. For fixed x
Fn(x) -+ x as n -- oo by the Law of Large Numbers tells us that, whereas

V/n(pn(x) - X) d- N(O,x(1 - x)). (18)

by the Central Limit Theorem. This result can be generalized to the function -P, : [0, 1] v

[0, 1] (i.e. when x is not fixed): as n --+ cc
Vx-(Fn(x)- X) d Wx Wl = Vx. (19)

3 The Feynman-Kac formula
Given a function f(x), define

u(x, t) = Ef(x + Wt) (20)

This is the Feynman-Kac formula for the solution of the diffusion equation:

Ou 1 & 2 u

0t 20x 2  u(x,O)= f(x). (21)

To show this note first that:

u(x,t + s) = Ef(x + Wt+,) = Ef(x + (Wt+, - Wt) + Wt)

= Eu ( + Wt+, - Wt t) Eu (x + W, t)

where we have used the independence of Wt+, - Wt and Wt. Now, observe that

-9 (XO t) = lim 1 (u(x,t + s) - u(x,t))
s-8-0+ S

S-+0+ 5

= lim s1 ( Ou (x, t)IEWs + 202 u +o()

54



where we have Taylor-series expanded to obtain the final equality. The result follows by
noting that EW, = 0 and EW2 = s.

The formula admits many generalizations. For instance: Ift
v(z, t) = Ef(x + Wt) + E j9(x + W8)ds, (22)

then the function v(x, t) satisfies the diffusion equation with source-term the arbitrary
function g(x): av 1 0 2v

Ot - 2 x2 + g(x) v(x,0) = f(x). (23)

Or: If

w(x,t) = E (f(x + Wt)exp ( c(x + Ws)ds) (24)

then w(X, t) satisfies diffusive equation with an exponential growth term:

Ow 1 0 2w
o - -2 + c(x)w w(x, 0) = f(x) . (25)

Addendum: The Law of Large Numbers and the Central Limit
Theorem

Let {Xj}jEN be a sequence of i.i.d. (independent, identically distributed) random variables,
let r/= EXI o2 = var(X 1 ) = E(Z1 -_7)2 and define

n

j=1

The (weak) Law of Large Numbers states that if lEjXjj < co, then

Sn
-- - 77 in probability.
n

The Central Limit Theorem states that if EX? < cc then

S -, -* N(0, 1) in distribution.

vno.2

We first give a proof of the Law of Large Numbers under the stronger assumption
that IEjXjy2 < cc. Without loss of generality we can assume that r7 = 0. The proof is
based the Chebychev inequality: Suppose X is a random variable with distribution function
F(x) = IP(X < x). Then, for any A > 0,

P(IXI Ž A) _< IlEIXP, (26)

provided only that EIXIP < cc. Indeed:

AP]P(IXI > A) = AP dF(x) < JlxPdF(x) - j kxIPdF(x) =- EIXIP.
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Using Chebychev's inequality, we have

n } 1E2

for any E > 0. Using the i.i.d. property, this gives

EISn12 = EIX 1 + X 2 +... + X12= nEIXI 2.

Hence

P{ 7 - >E} _< - 2EXI12 •0,

as n - o, and this proves the law of large numbers.

Next we prove the Central Limit Theorem. Let f be the characteristic function of X1 ,
i.e.

f(k) - Ee•kX, k C R. (27)

and similarly let g, be the characteristic function of S,/ ,/-,cr 2 . Then

E~ý,Nn2 fEc iýXj/ na1
2 = (EezXc 0,2)f

j=]

= 1 + -- E X 1  2 ,k 2 IE X 2 + o (N - ) n

-7_ nr -2,na
2  I

I - + o(N-1)

- -k2 /2 WS 71, - 0<.

This shows that the characteristic function of S,//- r2 converges to the the characteristic
function of N(0, 1) as n --+ oc and terminates the proof.

It is instructive to note that the on]y property of X1 that we have required in the
central limit theorem is that, EX2 < o. In particular, the theorem holds even if the higher
moments of X1 are infinite! For one illustration of this, consider a random variable having

probability density function 2
P W 2(28)7(1 + X2)2 ,

for which all moments of order higher than 2 are infinite. Nevertheless, we have:

f(k) Ceikxp(x)dx = (1 + k1) e-j'k

= 1 - ½k2 + o(k 2),

and hence the Central Limit Theorem applies. Intuitively, the reason is that the fat tails of
the density p(x) disappear in the limit owing to the rescaling of the partial sum by 1/sqrtn.

Notes by Marcus Roper and Ravi Srinivasan.
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Lecture 7: Stochastic integrals and stochastic differential
equations

Eric Vanden-Eijnden

Combining equations (1) and (2) from Lecture 6, one sees that WtN satisfies the recur-
rence relation

Wtýn=W ±+n+ AtV/-, W0N=0. (1)

where t, = n/N, At = 1/N and {fn}nEN are i.i.d. random variables taking values ±1 with
probability ½ as before. A natural generalization of this relation is

xNt+, = XNt + b(XU"'T,t,)At + o(X ,tn),n+ /Z-, Xo = x (2)

If the last term were absent, this would be the forward Euler scheme for the ordinary
differential equation (ODE) kt = b(Xt, t). If b(x, t) and o(x, t) meet appropriate regularity
requirements, it can be shown that XtN converges to a stochastic process Xt as N --* cc
(i.e. as At --• 0 with nAt --+ t). The limiting equation for Xt is denoted as the stochastic
differential equation (SDE)

dXt = b(Xt, t)dt + a (Xt, t)dWt, Xo = x, (3)

as a remainder that the last term in (2) divided by At does not have a standard function as
limit. The notation dWt comes from (1) since this equation can be written as WN - WN -

ýn+1 V6-t. We note that the convergence of XtN to Xt holds provided only that the ýn's are
i.i.d. random variables with mean zero, E&, = 0, and variance one, E-2 = 1. The standard
choice in numerical schemes is to take n N(0, 1), in which case

V/-tG+1 d Wtn+l - Wtn

In the discussion below, however, we will stick to the choice where {•n}nCN are i.i.d. random
variables taking values ±1 with probability 1 since it facilitates the calculations.

Next, we study the properties of Xt solution of (3) and introduce some nonstandard
calculus due to It6 to manipulate this solution.

1 Mt6 isometry and Rt6 formula

Consider the recurrence relation
xN+ f(wx+N7, xN = 0.
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Let us investigate the properties of the limit of a as N --.+ oo, assuming that this limit
exists. The limiting form of the recurrence relation above is traditionally denoted as

dXt = f(117, t)dlVt, Xo = 0,

which can also be expressed as the stochastic integral

xt = f (f , s)dW,.

Stochastic integral have special properties called the Rt6 isometry

E f f( , s)dWs = 0,

( f(14S, s)dUs) f Ef 2(Ws, s)ds.

The first of these identity is often written and used in differential form

Ef(Ws, s)dW, = 0.

The It6 isometry is easy to demonstrate. The first identity is implied by

?n =(0"f-I
L lEf(W/tt)IE{,'+ Al t=0,
in =0

where we used the independence of the ý,,,'s and Ei., = 0. The second identity is implied
by

in

where we use the fact that , and ýp are independent unless m = p, and 2 = 1 by
definition.

Going back to (3), a very important formula to manipulate the solution of this equation
is 1t6 formula which states the following. Assume that Xt is the solution of (3) and let f
be a smooth function. Then g(Xt) satisfies the SDE

dg(Xt) = g'(Xt)dXt + g" (X) o-(Xt,t)d t

= (g'(Xt)b(Xt, t) ± Ig"(Xt)o2 (XI. t)) dt + g,(Xt)or(Xt, t)dWt.

If g depends explicitly on t, then an additional term Dg/Otdt is present at the right hand-
side. It.6 formula, is the analog of the chain rule in ordinary differential calculus. However
ordinary chain rule would give

dg(Xt) = g(Xt)dXt.
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Here because of the non-differentiability of Xt, we have the additional term that depends
on g"(x).

The proof of Mt6 formula can be outlined as follows. We Taylor expand g(XtN+N ) -g(XNn )

using the recurrence relation (2) for XN and keep terms up to O(At):

- - X)) + -t+g~x;•+- x(NN)
= gXNXN N N 11 N lty N•

(tn tXn+1 - tn) "•29 A'~n)(Xt+1 4,Xn --.

= gi(~(xxN l N N

2 gt/N' (b(XN, tn)At + u(Xtn, tn)ýn+ix/-i) + O(At 3 / 2 )
t ~N N c +lfxN 2 Nt/2

-(x/t)(X•,•+ - x"') + 2g (xn)o2 (xAI,tO) +At + O(At3 /2)
g'(Xj1 )(Xf 1 - XN) + jg1(XNo) 2 (XN tn)At + O(At 3 / 2 ),=g nxto)xnlx.+1v tn tnJ tni•

where in the last equality we used + = 1. The Mt6 formula follows in the limit as At -- 0.

2 Examples

The Mt6 isometry and the Rt6 formula are the backbone of the Rt6 calculus which we now use
to compute some stochastic integrals and solve some SDEs. As an example of stochastic
integral, consider

fot W, dW,.

Taking f(x) = x 2 in Mt6 formula gives

ý dWt2 = W4tdWt + idt.

Therefore

j W1ws = 2 - It.

Notice that the second term at the right hand-side would be absent by the rules of standard
calculus. Yet, this term must be present for consistency, since the expectation of the left
hand-side is

E WWdW, = 0,

using the first Mt6 isometry, and the expectation of the right hand-side is zero only with the
term it included since 1Elt 2= t-

As a first example of SDE, consider

dXt = -yXtdt + adWt, Xo = x

This is the Ornstein- Uhlenbeck process. Using Mt6 formula with f(x, t) = e'x, we get (this
is Duhammel principle)

d(e'YtXt) = -ye' tXtdt + e'ytdXt = aeyt dWt.
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Figure 1: Three realizations of the Ornstein-Uhlenbeck process with X0 = 0 and y =a 1.

Integrating gives

Xt = e-±ytx + a ei-(t-s)dWs.

This process is Gaussian being a linear combination of the Gaussian process Wt. Its mean
and variance are (using the It6 isometry)

EXt = e-yx
I t  2IE(X, - IEXt) 2 :0 2 I(c-Y(t-s))2 ds = -- (1 - e-2 •).

Thus when -' > 0

x d N O, ,

as t -- O0.

As a second example of SDE, consider the so-called geometric Brownian motion
d3Y = Ytdt + oY•dW 1, Yo = Y.

This process has some application in mathematical finance. 1t6's formula with f(x) = log x
gives

d.log 1 = *(Ytdt+o)id"t) - 1

Integrating we get

Yt = YC a2t+ol4

Note that by the rules of standard calculus, we would have obtained the wrong answer

t = y& 1+w (wrong!)
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Indeed the term -la2t in the exponential is important for consistency since taking the
expectation of the SDE for Yt using the first It6 isometry gives

dEYt EYtdt,

and hence
EYt yet.

The solution above is consistent with this since
1 _2t

lEekw = e 2

3 Generalization in multi-dimension

The definition of It6 integrals and SDE's can be extended to multi-dimension in a straight-
forward fashion. The SDE

K

dXj = bj(Xt, t)dt + ±Zajk(XIt)dWk, j J

k=1

wheref{Wtk}K= are independent Wiener processes, defines a vector-valued stochastic process
Xt = (Xt,...., XJ). The only point worth noting is the Rt6 formula, which in multi-
dimension reads:

dfJ(X t) = O f(X t) 2 + k=1
j=1 .x

4 Forward and backward Kolmogorov equations

Consider the stochastic ODE

dXt = b(Xt)dt + u(Xt)dWt, Xo = y.

Define the transition probability density p(x, tly) via

j p(x, tly)dx = P{Xt+. e [XIX 2) X =Y

(p(x, tly) does not depends on s because b(x) and u(x) are time-independent.) The tran-
sition probability density is an essential object because the process Xt is Markov, in other
words: for any t, s > 0

P(Xt+s E B[x1 ,X 2 )I{X,'}O<s,<_}) = e(X,+ c B[xl,X2)I{Xs}),

i.e.the future behavior of Xt given what has happened up to time s depends only on what
X, was. We will derive equation for p. Let f be an arbitrary smooth function. Using It6
formula, we have

f(Xt) - f(y) = f'(Xs)dX + J f"(Xs)a(X,)ds,
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where a(x) = a 2(x). Taking expectation on both sides, we gett t
Ef(Xt) - f(y) = E f'(X,)b(Xs)ds + ½E f"(X,)(X,)ds.

or equivalently using p

J f(x)p(x, tly)dx - f(y)

jjf'(x)b~xp(x, sly)dxds + 1 j j f(x) a(x)po(x, s Iy) dxds

Since this holds for all smooth f, we obtain

ap a a2

= - -(b(x)p) + ½0-Zia(x)p) (4)

with the initial condition limt 0 p(x, tjy) = 6(x - y). This is the forward Kolmogorov
equation for p in terms of the variables (x, t). It is also called the Fokker-Planck equation.

Equivalently, an equation for p in terms of the variables (y, t) can be derived. The
Markov property implies that

p(x, t + sly) = J p(x, tIz)p(z, sly)dz.

Hence
p(x, t + At y) - p(x, t y) j p(x, tlz)p(z, Atly)dz - p(x, tfy)

- j p(x, tlz) (p(z, Atly) - 6(z - y))dz.

Dividing both side by At and taking the limit as At - 0 using the forward Kolmogorov
equation one obtains

- J p(Gt'lz) (- (b(z)6(z - y)) + ao(z)6(z - y))) dz,

which by integration by parts gives

O b ap 1 a2Pa= b(y)- + la(y)0 . (5)

This is the backward Kolmogorov equation for p in terms of the variables (y, t). The operator

L=z b(y)+ + a(y)2

is called the infinitesimal generator of the process. The coefficient b and a can be expressed
as b(y) = lim - (E2 Xt - y), a(y) = lim I-Ey(Xt -

1-o t t--0ot
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Figure 2: Snapshots of the density of the Ornstein-Uhlenbeck process at time t 0.01
(blue), t = 0.1 (red), t = I (green), and t = 10 (magenta). Here X0 = y = 1 and Y = a = 1.
The last snapshot at t = 10 is very close to the equilibrium density.

where lEy denotes expectation conditional on X0 = y,
Both the forward and the backward equations can be considered with different initial

conditions. In particular, given a smooth function f, if we define

u(y, t) = Eyf(Xt),

then u(y, t) = fR f(x)p(x, tly) and hence it satisfies

=u b(y)-49 + la(y) _2,

with the initial condition u(y, 0) = f(y). In this sense, the SDE for Xt is the characteristic
equation that is associated with this parabolic PDE, much in the same way as the ODE
)ýt = b(Xt) is the characteristic equation associated with the first order PDE au/at
b(y)au/ay. This can be generalized in many ways. For instance, the solution of

Dv 1v___-7 = c(y)v(y) + b(y) 9 + Ia(y) 02"

with the initial condition v(y, 0) = f(y), can be expressed as

v(y, t) = Eyf(Xt)eft c(X,)ds.

This is the celebrated Feynman-Kac formula in the context of SDEs.
Let us consider an example. The forward differential equation associated with the

Ornstein-Uhlenbeck process introduced in the last section is

ap a a 2 a2 p

at - YX (XP) + 2 Ox2
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The solution of this equation is

1 exp( •(x - ye -- )2

p(.,tly) = U2 (1 - e _2-y )/'y e p 2(- - e-2-y ) "

This shows that the Ornstein-Uhlenbeck process is a Gaussian process with mean ye-7 t

and variance o2(1 - e-2,yl)/2-y It also confirms that this process tends to N(O, 7'2/2y) as
t - oc since e-yx2 /a 2

p(X) = lim p(X' tly) = -2/o2

t-.OoDV-72-

Generally, the limit of p(x, t•y) as t - oo, when it exists, gives the equilibrium density p of
the process. It satisfies

(9 1 a2

0= - (b(x)p) + ± ( )

Forward and backward Kohnogorov equations can also be derived for multi-dimensional
processes. They read respectively

and 1 3 p) + -(ajj,(x)p)
t j=1 x j'j'=l x x

Op a J 0 2p
_= Y:5j(x) 'P + aj±, (X)

9 1 '3 j,j'=I

where ajj,(z) = "Lk -=% Ijk(X)%j'k (X).

Notes by Walter Pauls and Ar9, hir Dani Zarnescz.
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Lecture 8: Asymptotic techniques for SDEs

Eric Vanden-Eijnden

Here we discuss techniques by which one can study SDEs evolving on very different
time-scales and derive closed equations for the slow variables.

1 The case of stiff ordinary differential equations

We start with an ODE example. Consider

+ -Yt3+sin(7 t) + cos(v'2irt) Xo x

If E is very small, Yt is very fast and one expects that it will adjust rapidly to the current
value of Xt, i.e. Yt = Xt + O(E) at all times. Then the equation for Xt reduces to

=-X, + sin(wt) + cos(V27rt). (2)

The solutions of (1) and (2) are compared in figure 1.
Here is a formal derivation of the limiting equation (2) which uses the backward Kol-

mogorov equation. For simplicity we drop the term sin(7rt) + cos('/27rt). Generalizing the
derivation below with this term included is easy but requires a slightly different backward
equation because (2) is non-autonomous. Let f be a smooth function and consider

u(x, y, t) = f(Xt).

(This function depends on both x and y since Xt depends on both these variable because
Xt and Yt are coupled in (1), and there is no expectation since (1) is deterministic.) The
backward equation is

=t Lxu + Lyu,
atE

where

L 09

Look for a solution of the form u = uo+Eu-+iO(E2 ), so that u -- u0 as E --* 0. Inserting this
expansion into the backward equation, and grouping terms of same order in E, one obtains

Lyuo = 0,

LOu o - L.uo, 
(3)
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Figure 1: The solution of (1) when E 0.05 and we took X0 2, YO = -1. Xt is shown in
blue, and Yt in green. Also shown in red is the solution of the limiting equation (2).

and so on. The first equation tells that u0 belong to the null-space of Ly, i.e. uO uO(x, t).
The second equation requires as a solvability condition that the right hand-side belongs to
the range of Ly. To see what this condition actually is, nmultiply the second equation in (3)
by a test function p(y), and integrate both sides over R. After integration by part at the
left, hand-side, this gives

J L~p~yujd J ~y)(Df 0 - L uo dy.L * p(,y),,a@ I = P(Y) , at

where Ly is the adjoint of Ly viewed as an operator in y at fixed x, i.e.

L~p(y)1= ((Y - X)P(Y)).

Choosing p(y) such that
0 = Lyp(y), (4)

one concludes that the solvability of (3) requires that,

0 J p(y) o - L.uo)dy. (5)

It can be shown that this equation is also sufficient for the solvability of (3) - the calculation
above actually tells the range of L is the space perpendicular to the null-space of the adjoint
of Ly. Now, (4) is simply the forward Kolmogorov equation for the equilibrium density of
the process YV, at fixed Xt = x. Here the equilibrium density is a generalized function

P(Y1X) = 5(y - x).
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Using this p(ylx), the solvability condition (5) becomes

0 Ouo Ouo
at Ox

which is the backward equation for
lt =- 3, =

A similar argument with the term sin(7rt)-+ cos (vxrt) included gives the backward equation
for (2).

2 Generalization to stochastic differential equation

The derivation that lead to (2) can be generalized to SDEs. Consider

dXt f(Xt, Yt)dt, Xo= x

lb ox(,YtYdtd__ Y(6)
dYt b(XY)dt + (Xt, Yt)dt, YO Y,

and assume that the equation for Yt at Xt x fixed has an equilibrium density p(yIx) for
every x. Then going through a derivation as above with

u(x,y,t) =Ef(Xt),

one concludes that the backward equation associated with this SDE also reduces to (5) as
E -- 0, i.e.

o = F(x) xuo
at Ox '

where

F(x) = j f(xy)p(ylx)dy.

Thus the limiting equation for Xt is

X• = F(Xt), Xo = O.

The main difference with the deterministic example treated before is that the fast process
Yt does not rapidly settle to an equilibrium point depending on the current value of Xt -
only its density does.

Here is an example generalizing (1). Consider

dXt= -yt 3 dt + sin(7rt) + cos(V27rt), Xo = x

dYt = - Xt)dt + -dWt, YO = Y. (7)

The equation for Yt at fixed Xt = x defines an Ornstein-Uhlenbeck process whose equilib-
rium density is

p(yx) e/67
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Figure 2: The solution of (7) with X0  2, Yo = -1 when E =0. and a = 1. Xt is shown

in blue, and Yt in green. Also shown in red is the solution of the limiting equation (8).
Notice how noisy Y• is.

Therefore
F) y 3 e-(y-x)

2
/

2  3 3 2r(.:) J - V0o dy= -x -•x,

and the limiting equation is

-X- 1 o2 X, + sin(wt) + cos(v 2t), Xo = x. (8)

Note the new term -o 2 Xt, due to the noise in (7). The solution of (7) and (8) are shown
in figure 2.

3 Strong convergence and the property of self-averaging

The derivation in section 2 only give weak convergence, or convergence in distribution. But
stronger results (:an be obtained. Consider a system of the form

14 = f (X", t/•), (9)

where Yt is a given stochastic process. Assume that Yt is ergodic, in the sense that for any
fixed .r,

lif(., Y,)ds f(x). (10)

Then we can show that, as E - 0, Xf converges strongly to the solution of

Xt = f(Xt) (11)
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To see this, consider the integral form of (9):
•t •At

Xt+At - x = j f(X.,, YsI/)ds. (12)

We rewrite this equation in a way that allows us to exploit the self-averaging property (10).

ti+At ft+,6t
X•+At-- Xt= I f(Xt, Ys/,)ds +i (f(X", Ys/O) - f(Xt, Y'/f)) ds. (13)

We will consider the behavior of these two integrals as E - 0 separately.

Using (10), the first integral

ft+At6 f( E
f(Xt, Y 1ý)ds = E f(Xt, Y,)ds - Atf (Xt), (14)

as E --* 0. To investigate the contribution of the second integral, let

t+At

A(t, At, E) =i (f(X", Y/,:) - f(Xt, Ys/,)) ds. (15)

We then have fi+Ai

IA(t, At,E)I i If(X,, Ys )f(Xt, Ys/e)I ds. (16)

Assuming f is uniformly Lipschitz in Yt with constant K, we then write

t+At

JA(t, At,E) I <_i KlJXs- Xtl ds

+ jtt+t K fs- Xt-, YfI)ds'l ds

It is straightforward to show using (14) that, for sufficiently small E,

j K f (Xt, Y, 1,)ds' ds < CAt2  (17)

for some constant C < co. Gronwall's lemma then implies that

Xt+6 - - itj,, f(Xt, Y/'1 )ds = IA(t, At, E)l (18)

<_ CAt 2 expKAt = o(At).

This shown that

lim (XtE+At- Xt) = Atf(Xt) + o(At). (19)

which is sufficient to demonstrate that Xt converges strongly to Xt.
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4 Diffusive time-scale

An interesting generalization of the situation presented in section 2 arises when

jR f (x, y)p(ylx)dy = 0. (20)

In this case the limiting equation reduces to the trivial ODE, kt = 0, i.e. no evolution at
all. In fact, the interesting evolution then occurs on a longer time-scale of order E-1, and
the right scaling to study (6) is

dXt = f(Xt,Yt)dt, Xo x

EY (21)dE =j Ib (Xt, t) dt + :- c(Xt, Yt)at, Yo =y,

To obtain the limiting equation for Xt as E -+ 0, we proceed as above and consider the

backward equation for u(., y, t) = Ef(Xt), which is now rescaled as

0U 1 1
- = - Lxu + T21Lyu.at E

Inserting the expansion u = uo + Eul + E2U 2 + O(E2) (we will have to go one order in E
higher than before) in this equation now gives

Lyu 0 = 0,

Lyu = -Lxuo, (22)

LyL2 =- OŽ, - Lxu1.,

and so on. The first equation tells that uo(x, y,t) = uo(x, t). The solvability condition for
the second equation is satisfied by assumption because of (20) and therefore this equation
can be formally solved as

u, = -Ly1LxuO.

Inserting this expression in the third equation in (22) and considering the solvability con-
dition for this equation, we obtain the limiting equation for uo:

ato = Lxuo.at
where

Lx = dyp(ylx)LxL-'Lr.

To see what this equation is explicitly, notice that -Ly 1 g(y) is the steady state solution of

av
-. = Lyv + g(y).
at

The solution of this equation with the initial condition 7v(y, 0) = 0 can be represented by
Feynman-Kac formula as

v(y, t) = E j g(Y()ds,
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where Yt' denotes the solution of the second SDE in (21) at Xt x fixed and E = 1, i.e.

dYt7 = b(x, YtX)dt + a(x, YtX)dWt, Y -x y.

Therefore

-Lnylg(y) = E j g(Ytx)dt,

and the limiting backward equation above can be written as

ato _ 09 D9X

This is the backward equation of the SDE

dXt = b(Xt)dt + &(Xt)dWt, Xo = x,

where
b(x) = E p(ylx)f(x, y) f(x, Ytx)dydt,

2 -(x) = 2E P(yIx)f(x, y)f(x, Ytx)dydt.

The interesting new phenomena is that the limiting equation for Xt has become an SDE.
This means that fluctuations are important on the long-time scale and give rise to stochastic
effects in the evolution of Xt that were absent on the shorter time-scale.

The calculation above is easy to generalize if there is a slow term in the original equation
for Xt, i.e. if instead of (21) one considers

dXt =g(X, Yt )dt + f(Xt, Yt)dt, Xo =x

1 1
dYt = -b(X. Yt)dt + -o(Xt, Yt)dt, Y0 -,

E2

The limiting equation for Xt is then

dXt = G(Xt)dt + b(Xt)dt + &(Xt)dWt, Xo x,

with b(x) and &(x) as above, and

G(x) = -R p(ylx)g(xy)dy.

It is also straightforward to generalize to higher dimensions.
Here is an example.

dXt = 2YtZtdt - (Xt + Xt)dt,

3a 1 1
dYt -ZtXtdt - -~Ytdt + -dWt',

dZt E -b 3YtXtdt - j- Ztdt + E-dWtz.
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Figure 3: The equilibrium density p(x) Z-le 2  for a = (blue) and a = 2
(red).

where WM', 14/'7 are independent Wiener processes and a is a parameter. There are two
fast variables, Y• and Zt, in this example. There is also a slow term, -(Xt + X3)dt, in
the equation for Xt which, in the absence of coupling with Yt and Zt, would drive Xt to
the position ,I- = 0. We ask to what extend this equilibrium of the uncoupled dynamics is
relevant with coupling with Yt and Z1 .

The limiting equation for Xt is

dXt = ((_2 
- 1)XI - X3)dt + adlWt.

The equilibrium density for this equation is

p(X) Z Z-c2-

This density is shown in figure 3. For jolj < 1, p(x) is mono-modal and (:entered around
.7 = 0, the stable equilibrium of the uncoupled dynamics. However, for lal > 1, p(x) be-
comes bi-modal, with two maxima at x = ± v/ 2 - 1 and a minimum at, z = 0. Thus
coupling with the fast modes may destroy the structures apparent in the uncoupled dynam-
ics and induce bifurcations.

Notes by Inga Koszalka and Alex Hasha.
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Lecture 9: The use of variational methods for high-contrast
conductivity problems

George C. Papanicolaou

1 Introduction

In this lecture we will consider the conductivity in a high-contrast medium. Besides its
physical importance, the model under consideration will serve as an illustration of the use
of variational principles. This will provide a good introduction to variational principles
before using them in a more difficult form in the next lecture, where convection-diffusion
problems at high P~clet numbers (strong convection versus weak diffusion) are considered.

2 General formulation

Consider a smooth region Q C R 2 with outward unit normal n(x) and with given non-
negative conductivity a(x)1 . The governing equation for the potential 1 is

V • [o(x)VC] = O, xeQ, (1)

with Neumann boundary condition 2

x0Q = S(x), X E 0. (2)
an

The outgoing current I(x) is assumed to be equilibrated, hence

J IdS = 0. (3)

Next, let us introduce s(x) by assuming that the conductivity has the form

(x) = ooe-s(x)/, (4)

where we are interested in the high-contrast limit characterised by f 1 0.

Plugging (4) into (1) leads to

EAc - Vs*.V7 = 0. (5)

'The analysis will not be affected qualitatively in 3 dimensions, but for simplicity we will consider R 2.
2Dirichlet boundary condition •]ap = T can be analysed as well, without qualitative changes.
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Notice that the operator on P in (5) is self-adjoint, as opposed to the similar equation for

a divergence-free fluid, which will be discussed in more detail in the next lecture. In fact,
(5) is difficult to solve in general, hence in the following section the classical variational
principles will be introduced to help) us estimate the solution without solving the equation
itself.

3 Variational principles

To introduce the classical variational principles, we first need to define Dirichlet-to-Neumann
(DtN) and Neumann-to-Dirichlet (NtD) maps.

The DtN map A takes Dirichlet boundary data 4[0a = T to the outgoing current
I = uaa, hence ATJ' = I. Furthermore, given (3) the NtD map can be defined as the inverse
of the DtN map, namely., T = A-'I. Without going into details, let us note that after
determining these two maps, one has almost all the information about the problem that
can be observed at the boundary.

A is a self-adjoint, positive semidefinite map with respect to the standard inner product.
Indeed,

(A T, 111) A AT(x) T,(x) dS j I(x)'I,(x) dS = (using the boundary conditions)

a (x) a4l) (x)dS =j 4x d(x)a(x)V4 n dS = (by the divergence theorem)

J v. (4(x)u(x) V) dV= /d (x)V,. V dV > 0. (6)

which demonstrates that A is positive semidefinite. In the last step we integrated by parts
and used (1). Now let TIjl and qIJ2 be two different sets of Dirichlet boundary data. Using
(6) we see that

(A T1 , T 2 ) JATi (x)1J 2(x)dS = Ca(x)V4)] . V)2dV = (by symmetry)

= J A•I' 2(x)'I'l(x)dS = (I 1 ,Aq'12 ) (7)

and thus the map A is self adjoint.
Now we are ready to introduce the Dirichlet variational principle(DVP):

(ATI, TI) = min {juV•. V4) dV I Vd) is square-integrable and IFo = i}. (8)

To prove the DVP (8), we consider the Euler-Lagrange equations for the variational problem
on the right hand side. If an integral K is of the form

-dV, where 04)i (9)
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then the corresponding Euler-Lagrange equations for solving JK = 0 by varying - are,

using the summation convention,

9* (a 0- (10)Saxi =' o.lO

For equation (8) f(ý, $xj) = Ufjxi and thus the Euler-Lagrange equations become

a (A =0. (11)49xi

This is simply our original conductivity equation (1), and thus the integral in the DVP

(8) is minimised when $ = D where 4) solves (1). The integral in the DVP is called the

Dirichlet integral and measures the rate of energy dissipation.

The DVP can be written in another form, namely,

(AID, T) = min {A kEdV I E = Vd is a curl-free field and -),Q = T (12)

This form of the DVP helps to illustrate better the duality of DVP with the Kelvin

variational principle(K VP):

(I,A-1 I) = min { a-l.dV I Vj. =O and jnlaQ = I}, (13)

where j = aV4 is the divergence-free current. A similar calculation shows that the mini-
mum is realized by j = aVe, where (D is again the solution of (1).

Notice that while we cannot solve the conductivity equation (1) in general, we know

beforehand that the solution must be the minimiser of the functionals appearing in both
the DVP and KVP. This important feature allows us to bound both A and A- 1 from above

by taking appropriately well-constructed test functions 4 and j. It can be shown that this is

equivalent to finding both upper and lower bounds for the map A. In some problems these
bounds coincide, giving rise to the exact solution. This method is particularly well-suited

for problems in the high-contrast limit, where we try to find an asymptotic form for the

solution or at least bound it from both above and below.

4 The high-contrast conductivity problem

In this part of the lecture, we consider a particular problem which will serve as a bench-

mark to illustrate the application of the variational principles in the conductivity-related

problems.

Consider the conductivity equation (1) with ,(x, y) = X(x, y) + x,

V • [a(VX + ej)] = 0, (14)
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where for simplicity we have dropped the arguments (x, y). Here el is the unit vector along
the x-axis. Let the domain be the square region D = [-1/2,1/2] x [-1/2,1/2]. Consider
solutions with periodic potential X(x, y), which must be unique up to an additive constant.
We will be interested in the quantity

a*(el) = (a(VX + el)" el), (15)

where the average ( ) is taken over D. a*(el) can be interpreted as the average flux per
unit average gradient in the direction el.

Suppose a(x, y) satisfies o(x, y) = aoe-s(x,Y)/1 with the high-contrast assumption 0 <
e < 1. Then we can write u*(el) in the following form (justified by an integration by parts
and (15)):

cr*(el) ( u(VX + el) . (VX + el)) = JDa(Vx + el) . (Vx + el) dx dy. (16)

Furthermore, using the Dirichlet variational principle,

u*(el) = minj auoes/8(VR + el) (VX + el) dx dy. (17)

We will now consider the case where there is a single saddle point in our domain (Figure
1). The integral in (17) cannot be tackled by Laplace's method, since X itself depends on
the infinitesimal parameter e. In fact, the major contribution in the integral comes from
the neighbourhood of the saddle point, which, without loss of generality, can be assumed
to be at the origin with principal axes aligned with the coordinate axes. Since the gradient
of the function at a saddle point vanishes, we have the following Taylor expansion of s(x, y)
up to second order:

s(X y) - kx 2 +k 2 2 (18)

where k, and k2 are the principal curvatures of the level curves of s intersecting at the
saddle point.

Next, we pass into an approximate inequality by shrinking the integration region to
A = [-6,6] x [-3, 3] and plugging the truncated expansion (18) into (17), as well as by
minimising only among the functions X(x, y) =X :

u*(el) < min coexp - [so- k X +- y2] -) ( + 1)2dxdy

5{r ~2 2 /

k2 ) +(1)2""Zz cae-S°/C' lu(•)rin e 2, X ) dx. (19)

By DVP, the solution of (14) is the minimiser of the functional above, hence we will look

for ,(x) satisfying the equation

(e 2• (Xx + 1))" = 0! (20)

76



Y

1

. . ..

............ ... . ... ............

nea the saddlee point.

Sicec s er malth aerg in (21 cnbtaeov ratenighorho oftesdl

odraypoic tem

2

while the costadlpont.Ccnb ondfo 2)

orde +asymptotic ter(2.

77



Hence the optimising function satisfies the approximate equation, which is asymptotic to
the solution of (14) as c - 0

+ -2, (24)

Plugging into the integral (19) leads to

Gr*(el) < aoe-so/ -- -2 K 2,e (25)

which is the conductivity at the saddle point uoe-so/(, multiplied by the factor 'k deter-

mined by the curvatures of the level sets passing through that saddle point. For instance,
small k2 corresponds to a narrow saddle point, where the conductivity is large.

Using KVP for the backward NtD map, one can find a lower asymptotic bound for
u*(ei) which turns out to be exactly the same as in (25)! This leads to the exact asymptotic
expression for the average resulting flux in the x-direction

a*(ei) -oeso/( as, f --+ 0. (26)

The corresponding resistance p* 1//r* is given by

p*(el) 0- as E - 0. (27)

5 Complicated topography

We now consider the situation where we have multiple saddle points in our domain. Figure
2 gives an example of such a situation.

To understand how current flows through the domain in Figure 2 it is useful to make an
analogy with the flow of water. Consider the case where current flows into the domain over
a. It will flow directly to the nearest point of maximum conductivity, node 1. There current
will "pool" before escaping through the "channels" (saddle points) to the adjacent nodes.
From these nodes current will then flow either to other nodes via, the channels, or out of
the boundary. Hence intuitively the domain can be thought of as behaving as a, network of
channels.

More formally, we have that the dominant contribution to the DtN map A as 6 1 0
is determined by the saddle points of s(x, y). At each saddle point we can calculate the
resistance of the saddle using the result for a single saddle (27). Denote the resistance of
the saddle point between node i and node j as R4j. Note that R4j is symmetric: Rij = Rji.
Since each saddle can be considered as a single resistor, we can reduce the problem to a
sinple resistor network (Figure 3).
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Figure 2: An example domain with multiple saddle points. The topography of s(x, y) is

shown. The filled circles are local maxima of conductivity, and are numbered 1, 2, 3, 4
(we will refer to these as the nodes). The lines dividing the domain are the valleys. The

corresponding divided parts of the boundary are labelled a, b, c, d. The saddle points are
shown as two short parallel lines, resembling channels. The resistance Ri has been labelled

by each saddle (see later discussion).

The DtN map A of the full problem is asymptotic as e • 0 to the DtN map of the
resistor network. Consider the Dirichlet problem where the potential • is specified on the

boundary, •I0• = 'I. Then equation (8) becomes

•,•[0n k
4
'•k I[fl='k jEnodes k~v3

The above expression specifies an asymptotic upper bound for the DtN map A. Here the
set v3 is the set of nodes adjacent to the node j, and •j is the potential at node j. 'J!k are

the integrated potentials specified on the sections of boundaries k. The boundary condition
is now that the potentials 4•k of nodes adjacent to the boundary are equal to the potentials
'Jk on the boundaries. For the example domain, the boundary condition becomes • 1a = a

•2= 'I'b, •)3 = XIc and •4 = 'd- In this simple case it means that all •k have been
determined, but in more complicated cases there can be •Žk in the interior of the domain
which are not directly specified by the boundary condition. Even in these more complicated

cases, the minimisation is now just an easy to solve matrix problem.
Similarly we can solve the dual problem (13) where the current j is specified on the

boundary rather than the potential •. The dual problem yields a corresponding asymp-
totic upper bound for the inverse map A-', and thus an asymptotic lower bound for A. As

in the single saddle case it turns out that the asymptotic lower bound for A is the same as

the asymptotic upper bound, and thus we get an asymptotic equality.

Notes by Khachik Sargsyan and John Rudge.
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Figure 3: Resistor network corresponding to the domain in Figure 2. Current flows into or
out of the network over the boundaries a, b, c, d.
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Lecture 10: Convection Diffusion Problems

George C. Papanicolaou

1 2-D Convection-Diffusion

Consider a 2-D divergence-free, periodic, steady flow field u(t, x) in a domain without any

boundaries. Let ý(t, x) be the concentration of a passive scalar, say temperature. Then the

non-dimensional governing equations for the non-dimensional variables f and u are:

fit + u. VW5 = EAj3, (1)

V u=0, (2)

together with the initial condition f(O, x) = f5°(x). Note that c is dimensionless parameter

since E-1 - UL/v = Pe, where Pe is the Peclet number and L is the size of the peri-

odic cell. By integrating (1) over 9M2 and using (2), we see that if fro2 °(x)dx = 1, then

f912 fi(t, x)dx = 1. Also if p°(x) >_ 0, then fi(t, x) > 0. Since V . u = 0 and the flow is 2-D,

it is possible to introduce a stream function O(x):

u = ( -_ y OV ) • (3)

If O(x, y) = sin x sin y + 6 cos x cos y, then we have a cellular flow if 6 = 0, and a shear flow

if 6 = 1. Since x(t) is the position of a diffusing particle, the evolution equation for x(t)

can be written as the following SDE:

dx(t) = u(x(t))dt + F dW(t). (4)

If there is no diffusion (i.e. there is no V2/E dW(t) term in (4)), a particle starting on a

particular streamline remains on the streamline. If we have diffusion, there is a possibility

for a particle which starts in the region (a) to move to the region (b) (See Figure 1). In

that case, fi can be interpreted as the probability density of x(t).
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Figure 1: Rough sketch of the periodic cell

2 Effective diffusivities

Consider a diffusing particle, limt, it E [{(x(t) - x(O)), e} 2 ] always exists for u(x) which

is periodic and satisfies V. u = 0 and (u(x)) = 0, where (.) represents the periodic cell

average. We denote this limit as a,*(c), so called the effective diffitsivity. It is a quadratic

form of e.

We now take the large time, long distance limit of the PDE (1) by changing the variables

i -- ý n2t, x -- nx and letting n - oc. (This process is called the homogenization.) pn(t, x) =

p(n 2t, nx) converges to p(t, x) in an apl)ropriate sense as n co, where p(t, x) is the

solution of the homogenized equation

pt V. (a2Vp) , (5)

with p(O, x) = p"(x). a>*(e) is a constant matrix, or more precisely

aC(c) - (( + 1'1)(Vx ± e) e) , (6)

where I is the identity matrix, X(a:) is a periodic function in ()2 and

T(x)= ( 0 -<)(Xy)) (7)V (,y) 0

It is found that ur (e) satisfies the polarization relation

(a7*)ij =1[cu*(ei +i e~j) - cu*ei - ej)] , i, j = 1, 2, (8)

where el = (1. 0), e2 = (0, 1). Apart from the homogenized equation (5), the homogeniza-

tion process also yields the cell problem, that is

V. [(i + ',I(x))(Vx + e)] = . (9)
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a* can be calculated by solving (9) for X and plugging it into (6). The full derivation of

(5), (6) and (9) will be shown in the next section. The physical interpretation of a* (e) is

the average flux in the direction e when there is a unit average gradient in the direction e.

3 Asymptotics for p,(t, x)

Recall the passive scalar advection equation in the fast variables

"at - V. ([+ pn(x)]Vpn) (10)at
with initial condition

pn(O,x) = AX)

where I is the identity matrix, Tn was defined previously, and we have set f = 1. First we

must check that (10) solves (1)

at \ x ay )a 4 /x

- (Pn)xz" + (Pn)yy - (/n)x(On)y + (Pn)y(kn)x - /n(Pn)xy + ?Pn(Pn)yx

- Apn - u" Vpn.

Next we expand Pn in an asymptotic series

pn(t,x) = p(t,x) + 1p(1)(t,x, nx) + l p(2)(tx, nx) +
n n2

It is clear that for this problem we have a clean separation of scales. The fast time scale

does not appear because the coefficients are time homogeneous.

Let nx = so that V -- Vx + nVý. Plugging pn into (10) we get

P +1 pl) +1p (2) +

at P n +n2 ..

(Vx+nVý) [(IT +Tn()) (Vx + nVý) (p + p(1)+ -p( + (2)]+In n 2 . .

As is standard procedure, we equate the coefficients for powers of n. At O(n2):

V•. [(K- + 'Pn(0)) Výp] = 0. (11)

Note (11) is automatically satisfied since p is not a function of ý. At 0(n):

VC [( + Xlpn(O)) Vxp] + Vx. [(I-V + Tn()) Vop] + VC . [(I + Tn(0)) VCP(1)] = 0. (12)
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The second term in (12) is zero via (11). Upon rewriting (12) we get

[(I- + qji () (V ýP(') + VP =0 (13)

which resembles the cell problem (9). Equation (13) is a PDE for p(')(ý) (periodic in •).

We can cast (13) into the cell problem by letting

d

PM )(t, X,) o Z ,Xe.j W~ 09 (t, X)
j= 1

which separates the ý dependence from the t, x dependence. The function Xe(j) satisfies

V. [(I + 'j,(ý) (VýXe•) + e)] = 0. (14)

At 0(1):

-9 . [(C + 'I'~(w) Vxp (2)j + VC ( + T1½($) V-P'j +YtI

Vx* [(P + 'I',d() Vop(1) + Vx* [( v + Tn(w) VXP]

which is a PDE for p(2) (ý) (periodic in ý) with t, x as parameters. This can be re-written

as

S[(I j q,,(•)) Výp(2)] + S = 0 (15)

where

S =V [I+ qj'j(u VPM') + V, - [P + 4;j(w) Vop(')] + V, [(I + T'-)) VXp] - L

Upon Inking the cell average of (15), we obtain

KV . [(I + qý, ))Vp2] V )+ (S) = 0 (16)

and since Výp( 2) is a gradient of a periodic function, (S) = 0 which yields

"P V .[(I + P?"(o)) V.,p()] ) + Kvx. [(I + xp"(u Vop()j +

-x [K+ ± 'I½w) (VPw + V.XP2]
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since Vpl) is the gradient of a periodic function. In component form

____ A Dp(') + p

a Ajj(ý) (a °l) + - +

at k Oxi ax k

(ij (YzXek WaI?4t, X))+

iZZk Aij ( Xlk a'P + ____a2

a0j aXiaXk a XiaXk J

( <Auj (X~k +3jk)>

where Aij Iij + Tijj(ý). Thus, we obtain the homogenized equation

ap * 02P (17)

at i,k kaik

with

C' <Au (8ek +±j

or

V= V. (18Vp))

In summary, the key ideas for homogenization are:

1) Perform a multiscale expansion

t, x '-' macroscopic scales (slow)

n 2t, nx i-' microscopic scales (fast)

the resulting PDE will involve both fast and slow variables. In our case V) -+(nx). In

general 0 -* 0(n 2t, nx, t, x).

2) Seek an expansion in which the principle term is slowly varying (t, x).

3) The coefficients of the slowly varying equation come from a cell problem. In this case

the term of interest was p and we had to go to 0(1) to get the cell problem.
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The effective diffusivity matrix, ur is given by

or* = ((i + XP) (Vx) e)

= ((ci + P) (VX + e) . (VX + e))

where we added VX to e because V. [(cI + P) (Vx + e)] = 0 (9). Also since (VX + e)

(VX + c) is a quadratic form and Tj is skew symmetric, we obtain

oC(e) E=(IVx+e12)

- + E (IVx12).

From this it is clear that convection always enhances diffusion since or'(e) > c.

Finally we check convergence of the asymptotic expansion

1)

inax Ip.(t,x) - p(X, 0)1 < max l +0 < C+

O<t<0tT,xEP 2 7i1,n •O•P n n

provided p0 decays rapidly at infinity and is smooth.

2)

f (Vp, - Vp) o(t, .x)drdt - 0

where 0 is a test function. This says that, on average the gradient converges. Calculating

Vp,, we obtain

Vp.1 = Vp + Výp(I) (t, x,rnx) +

3)

sup Vp,1 - Vp 2 d<G < CT-
](t<7"V" 2 Vpn

thus p(M) closes the problem and allows us to determine Vp,,. Note that 3) implies 2).

Notes by Tiffany A. Shaw and Aya Tanabe.
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Lecture 11: Analysis of the Childress cell problem and
stability of cellular flows

George C. Papanicolaou

1 Introduction

In the first part of this lecture we will discuss the Childress analysis of the cell flow problem
and apply to it variational methods. Furtheremore the general case of coupled Childress
cells will be briefly analyzed. In the second part of the lecture we will discuss the stability
of 2D cell flows for the forced Navier-Stokes equation.

2 Childress analysis of of the advection-diffusion problem for
a simple cell flow

In the previous lecture we have seen that the multiscale analysis gives us the following large
scale equation

V [(4I + T)(VX + e)] = 0, (1)

where I is the unit matrix and T is the matrix given by

P (x, y) = ( ) (X, Y) (2)

The effective diffusivity is equal to

c (e) = ((EI+P)(VX+e).e)= a*(e) = ((EI+ 1P)(VX+e).(VX+e) = c+-E(VX.VX). (3)

The background flow is assumed to be given by a very simple velocity field u = (-19yo, 04v)
with stream function

0 (x, y) = sin x sin y, (4)

which is represented on Figure 1. Note that due to the symmetries of the flow (4) it is
sufficient to consider a quarter of the original cell [0, 27r] x [0, 2rw]. Indeed, a fluid particle
which is initially contained in the cell [0, 7r] x [0, 7r] will stay in this cell for all times, see
Figure 1.

Equation (1) can be also written as

EAX + u VX + e u =0. (5)
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Figure 1: Simple cellular flow with stream function ý0(x, y) = sin x sin y within the cell
[0, 2ir] x [0, 27] (a) and the quarter cell [0, rr] x [0, rT] (b).

Chose e = (1, 0) and let p = + x. Then we obtain the equation

(Ap + u Vp = 0. (6)

The boundary conditions are specified as follows

p(, Y) = 0 p(7, y) = 0; (7)

-p(X, 0) = o aP, F) = 0. (8)

The effective diffusivity can be calculated as follows

7T= 7
2 

(Vp)2 d.cdy, 
(9)

where a*(el) = or. To calculate the effective diffusivity (9) boundary layer theory can be
applied [1]. On dimensional grounds the thickness of the boundary layer is expected to be
of order v/e. Indeed, the boundary layer can be estimated by equating the convection time
scale tco,,v "- L/Uo and and the diffusion time scale tdiff - 12/' (U0 is the characteristic
velocity and v is the viscosity). The quantity I/L is the width of the boundary layer.
Equating teeny and tdiff we obtain -L - E and L, 2  (1)2. Since c = -iL ()2 it follows

U0 v Uo L: L Fe

that the width of the boundary laye is given by i -•-. The same arguments apply to the
case of more general periodic flows (discussed in [2]) such as the one given by the stream
function

"4(X, Y) = sil . sin y + 6 Scos X cos Y, (10)

see Figure 2.
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Figure 2: Cellular flows with stream function 7P(x, y) =sin x sin y + J cos x cos y for different

6's.

Cellular flows connected with each other by slight random deformations of saddle points
have been considered by Isichenko in [3]. The deformation is assumed to be of the form

7(x y) == sin xsin y + J (x, y), (11

where the parameter 6 is assumed to be small and the function is random with certain

properties [4].
In the periodic case the effictive diffusivity can be estimated by using the fact that p

changes significantly only in the boundary layer. Therefore Vp is of the order of l/v// and

More precise results can be obtained by using the boundary layer method. We introduce
boundary coordinates

(x, y) ( 0,), 0 _< _< 1, -4 < 0< 4. (12)

Note that 0 is just the value of the stream function which is equal to zero on the boundary.
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Furthermore , the level lines of V) and 0 are orthogonal

VV. *V = 0, Vol = IVOj on V = 0. (13)

It, is suitable to rescale the coordinate V in the neighborhood of the boundary. We define

(h, 0) = $=0). (14)

The standard chain rule yields

Op Oh, Op O+09Qp
,x O3 Oh, Ox 00

and
Pxx = h, xPx + h2Phh + 2hxOxP+hO + O±xPO + OPo0.

For F K< 1 the left hand side of (6) can be written as

((PXX + pyy) - ( AV!PI + IVI12phh + CAOpO + E(VO) 2pO0 .

Form the condition (13) follows

"-)OPx + p)3xpy = _V VOpo = 1VVh12po + h.o.t.

The boundary layer equation has the form

Phh± + PO = 0, h > 0. -4 < 0 < 4 (15)

with boundary conditions

p(O,0) = O for 0 < 0 < 2 (16)

p(O,0) = r, for -4<0<-2 (17)

0a =0, for -2<0<0 and 2<04. (18)

Finally, we obtain the Childress equation

1 U, - f f4 p1dhdO. (19)

This problem has been treated by A. Soward in [5].
Finally, let us remark that boundary layer coordinates can be used to give an estimation

of the scaling of c* in the case of random flows. As before we suppose that the boundary is
given by the level set ' = 0. However, due to the randomness of the flow this boundary has
a complicated fractal structure. For small V) let the characteristic velocity at 0' be denoted
as U(V/) and the width of the boundary layer by I(V)). Just as in the case of periodic flows we
equate the diffusion time scale to the convection time scale U2 (V)/ e l(V)/Uo. Percolation
methods can be applied to calculate the width of the boundary layer in dependence on
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[4]. This gives 1(0) _ ?-7/4. Since the velocity is assumed to be smooth it follows that
U(V)) - 0 and Uo = 0(1). Therefore

4 1 (20)

Supposing that the gradient of p is of order - we obtain from (9)

S~Z()U¢) E3/13 (21)

where l(O)U(O) is the area of the boundary layer. Therefore, for random flows the effective
3

diffusivity scales like ET1.

3 Variational analysis

The discussion of variational method results in this section is largely based on [2]. Denoting
E+ = VX + el equation (1) becomes

V.(I+ )E+ = 0 (22)

and E+, satisfies conditions V x E+ = 0 and (E+,) = 0. We also consider the adjoint
problem

V - (I - T)Ee2 =0, (23)

with V x E- = 0 and (Ee2) =0. For convenience of notation define

De+ =(I + qf)Ee+,, Ee, = (I - xP)Ee-2. (24)

Then the effective diffusivity becomes

o*(el, e 2 )(D 2 ). (25)

Define now

E1 (D+ - ), (26)E/12 =2 e Ee2) D12= 2(el e2

E12 = 1 (Ee+z + Ee2 D 12 = (D+ + D), (27)
2 2~ el e2

(28)

It follows that

D/ 2 = E 2++JEa 2 , V-D12 =0, VXEI2 =0 (29)

D12 = E12 + xE'12, V D 12 =0, VxE 12 =0. (30)

The effective diffusivity can be written as
1_ 1D2.+

S(D+ -e2) I(D+ . e2 ) + I (D- . el) .D+" E-) +E+)2 ' 2 2 2 e2 e2 e-
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r1

((D+ + D-)(E+ + E - ((D±- De2 )(E+ -E-)) = (D12 E 12) - (D12" E12 )'

4 e, e el e2 4 el 2 e] e

Then we obtain the following matrix equation

G7 1 ) (E 12 ) (E 12 ). (31)

Notethatthematrx (~ ~)is symmetric but indefinite.

Effective diffusivity can be computed as solution of the following variational problem

Uast(ei, e2) = inf sup {A(F, F')} (32)
(F):="'2,VxF=o (y,}=E_ ,VxF'=O

where the matrix A(F, F') is given by

The algebraic technique which underlies this calculation is that of a partial Legendre trans-
form.

We will now give upper and lower bounds. First analyze the supremum. Consider the
equation

VF'+ V. (qF) = 0 (33)

with
F' -- e, - _ F1, F, (34)

2
where FVA- 1 V is the projection operator on the space of divergence-free vector fields. It is
easily verified that (34) gives (33). Now we plug F' into the expression (32) setting el = e2.
Then we obtain the following upper bound for the effective diffusivity

1
u*(e) = inf {c(F .F) + -(PFIF. F17,F). (35)

V x F=0, (F) =e

Choose F = Vf with f = f(h, 0). Then the first term (F F) in (35) gives

SVh,2 O + Iv°12 ' (36)

where we have used (13). Since the second term in (36) is of order f in comparison to the

first term we obtainC5 0C4 1 E
chF -F) - T2 jVh -J(, 0) dhdO0. -j ( ) dh dO. (37)

Here we have used the fact that near the boundary J(h, 0) - vclVh12 .
To calculate the second term in (35) suppose that 1F7'VVf = Vf' so that f' is the

solution of the Poission equation

CAP' (-V½Y ), b)- Vf. (38)
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The second term of (35) becomes now

l(rxVf. Frvf) = E(v f'). (39)

To obtain f' up to the leading order in c it suffices to replace equation (38) by

0 2f' Of' (40)
Oh2 00

where we have again used the fact that J(h, 0) -• V/clVh12 near the boundary. Solving (40)
by direct integration we can calculate the left hand side in (39) in the same way as we have
done for e(Vf. Vf). This gives

E 2 Jo 4 - an) dhJdO. (41)

Finally we obtain the following inequality

1 1EOh]\2 + ( haf 2 h

lim _•*o(e) < in- + ) dhd0.

In a similar a lower bound can be given. Note that Childress problem appears in both lower
and upper bounds bounds and represents therefore an asymptotic relation [2].

4 Coupled Childress problems

In each cell we have different functions fi(hi, 0) and the following system of Childress equa-
tions 02f2  Of

-h-2+--=0, h>0, 0E[0, A]. (43)

We have to impose the following boundary conditions: filedges fik(0), where k is one of
the edges.

For common interior edges we have the conditions

Of2 
0 fj

0-9 + -f lh=O = 0. (44)
Oh + h

This allows us to construct a network approximation for convection-diffusion problems with
many cells, see Figure 3.

5 The Stability of Cellular Flows

Let us consider the two dimensional Navier-Stokes equations driven by a spatially periodic
force F(y): {, +(U V)U= -VP+ -LAU+9F
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Intrio Interior B ounda

Figure 3: Network approximation for problem of many coupled cells.

where the Reynolds number Re = U is based on a length scale L which is proportional to
the period of the forcing, taken to be equal to 2re.

As we are in two dimensions, the incompressibility condition V U = 0 implies that
there exists a stream function I) so that U = (-•

Writing the Navier-Stokes equations above in terms of the stream function 4 we have:

- A 4) + Jyv(4, A I)) - A24' + f (45)
(9t Re

where Jyy(u, v) = -1u 2v1 + uIv 2 . Here f = -F 1 ,2 + F 2,1 is 27 periodic in R 2 . It is chosen so
that it gives rise to a stream function < which is a time independent, mean-zero, periodic
solution of the Navier-Stokcs equations:

Jyy(¢(y), A¢(y)) = A2¢(y) + f(y) (46)

Let 1(T, y) = 0(y) + ()(T, y) be a perturbation of the stationary solution 0(y). If the

stream function of the basic flow is an eddy of size k-½, that is if 0(y) is an eigenfunction

of the Laplacian

AO -k (47)

then the driving force f(y) is

-k
2

.f(Y)= k 0(y)Re
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and (D(7-, y) satisfies:

A y) + Jyy ((y), (k + A) (ry)) + Jyy(T, y), Ad'(7, y)) A A 2 (7, y) (48)
Re

What concerns us here is the stability of eddy flows like (46) and (47) subject to an
initial modulational perturbation, a perturbation on a scale much larger than that of the
eddy (see Dubrulle and Frisch([8] for references about previous works in this direction). For
this purpose, we introduce a small parameter E and define the large-scale time and space
variable

t = 62 T•, y (49)

respectively and analyse a special class of asymptotic solutions of (48), where •(T, y) =
V J(t, x) is expressed in the large-scale or slow variables as:

l(t,x) = X(t,x) + oI'(t,x,x/E) + E2 ,Q2(t,x,x/c) +... (50)

One can derive (see [6] for details) from (48) the large scale modulational equation for
T (t, x) in the vorticity form:

OtV 2qI(tx) + ajiklnVji(Vk•I(t,x)Vl'P(t,x)) = VjiklVjViVkVl(t,x) (51)

(where we used the convention Vi= a

The coefficients Vjikl are the tensor of eddy viscosity and anlin effective oef-
ficients of another tensor which we call the nonlinear a-tensor (see [6] for details). Both
tensors are derived as necessary solvability conditions of auxiliary cell problems that guar-
antee the validity of the separation of scales for some finite time.

We will consider a family of cellular flows with a stream function

= sin(yi) sin(y2) + J cos(yI) cos(y 2), 0 < 6 < 1

All coefficients of the eddy viscosity tensor Vjikl but one, called v' can be computed
analytically. The large-scale modulation equation corresponding to v' is:

V2p + Re 2 (V2 - V2)[6((V I q) 2 + (Vp)2 ) + (1 + 62 )V 1 'IV 2'] + +Jxx(qI, V2 q')

1t Re V 2T 2P
- VIi - R[(VI + 6V 2 )2 + (6VI + V2 )2 ]V2 T + +(-(1 + 62) + v')(V2 - V2)p (52)

Re 8 22 1

The v' can be computed numerically for Re < 32, and for closed cellular flows q$
sin(yi) sin(y2) it can be shown that v' = O(Re2 5) for large Re. This is done using an
extension of the variational principles discussed earlier in this lecture (for details see [6]).
Previously, Sivashinsky and Yakhot ([7]) and also Dubrulle and Frisch ([8]) have done a
small Reynolds number linear stability analysis (see [7]), but in our case we are concerned
with large Reynolds number flow.

The modulational perturbations of closed cellular flows (6 = 0 in (5)) are much more
stable than the shear cellular flows (6 = 1 in (5)) for large Reynolds numbers. More specif-
ically, exponential solutions T(t, x) = exp(at) exp(klxl + k2x 2) are asymptotically unstable

95



as Re -* oo only if k, 1  ±k2 for closed cellular flows. This result is to be contrasted with
a similar stability result for shear flows, where exponential solutions are asymptotically
unstable as Re -* 0c if C <_ Ik 1 /[k 2I < C2 where C1 = 1/C2 ,• 0.45 -€ 1. It can also be

shown that because of the presence of V' = O(Re2 5 ) for closed cellular flows, the stability
at high Reynolds numbers is significantly better for flows with closed streamlines. Cell-like
mesoscale ocean flows (which are at high Reynolds numers in the range of 10 - -103) are
close to closed celluar flows, and so the previous analysis may explain their persistance.

Notes by Ravi Srinivasan, Dani Zarnescu and Walter Pauls.
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1 Introduction

Shallow water flows in channels are of interest in a variety of physical problems. These
include river flow through a canyon, river deltas, and canals. Under certain conditions we
can get large hydraulic jumps, or their moving counterparts bores, in the channel. There
are a number of places where these bores are generated in rivers around the world, including
the River Severn in England, and the Amazon in Brazil [6].

Figure 1: A surfer riding a tidal bore on the Amazon.

In this work, we will be concerned with the effect that geometry and flow rate have on
the formation and stability of hydraulic jumps. The general setup is inspired by Al-Tarazi
et al. [2] and Baines and Whitehead [4]. The motivations are to use the present study to
investigate shallow water flow and also as a tool for comparison with the granular media
flows studied in [2]. The idea being that this will lay a foundation for the study of mixed
media flows.
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The body of this report is divided into five sections. First we will present the one
dimensional inviscid hydraulic theory. Then we will compare the inviscid theory with the
experimental results. Next we will discuss some two dimensional and frictional effects.
Finally, we will discuss some areas for future research and make some concluding remarks.

2 Experimental setup

We conducted a series of experiments in a linear flume with a flat bottom and piecewise
linear cross section. Water flows through a sluice gate at the beginning of our channel,
pours out of the end into a large reservoir, and is recirculated using pumps. The setup is
shown in Figure 2.

Figure 2: The experiments were done in a linear plexiglass flume, where water was recircu-
lated using pumps in a large trash can, seen on the right, downstream of the contraction.

The flume had a 20 cm cross section, and was approximately 1.5 m in length. When all
three of the pumps were in operation, we could generate a volume flux up to 4 liters/sec. For
each experiment two plexiglass paddles, 30.5 cm long, are fixed at a given angle at the end of
the channel. The flow rate is set by turning on the desired number of pumps and restricting
the flow until the various flow states are observed. The flow rate is then measured using a
bucket and a stopwatch at the end of the channel. In order to increase the accuracy of our
flow measurement, the discharge was measured a minimum of five times and the mean of
these measurements was taken as the flow rate. In each experiment the height of the fluid
is measured by placing a thin ruler in the fluid parallel to the flow velocity and visually
estimating the depth. Data was taken at a variety of nozzle widths and flow speeds. A
schematic of the experimental setup is shown in Figure 3.
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Figure 3: A sketch of the tank is given. The tank is piecewise linear, with paddles at the
end to regulate the nozzle width.

3 One Dimensional Inviscid Flows

Here we will present the mathematical formulation of the problem of flow through a channel
with a contraction. We will derive the governing equations from conservations laws and use
these to give predictions for steady one dimensional (I-D) flows. Next, we will determine
the necessary flow conditions for moving shocks, as well as for stationary shocks. Finally,
we will derive a stability condition for steady shocks in a contraction.

3.1 Conservation Laws

Conservation of mass of a constant density fluid in a shallow channel can be written as

d x b(x) jh(.T,y,t) pdzdydx b j jh(x,y,t) p(u(xo, y, t) - u(xi, y, t))dzdy, (1)

where the x-axis is measured down the centerline of the channel, x0 and x, are arbitrary
points on this axis, and t is time. If we use the divergence theorem on the integral on the
right hand side, and take h and u to be independent of y this becomes

j [pb(x)h(x, t)], + [pb(x)h(x, t)u(x, t)]x dx = 0. (2)

Since x0 and x, are arbitrary we get that the argument of our integral must be equal zero
pointwise

(bh)t + (bhu)x = 0. (3)

Here u is the velocity, h the height of the free surface, b the width of the channel, and p the
density of the fluid. Partial derivatives are written in two ways as at(.) = (-)t and so forth.
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For water, p, is taken constant, and we therefore have dropped the p dependence from (3).
We can also get a momentum equation using Newton's second law of motion

dk p(x, y, t)dV = PU(X, y, t) 2 " ndA + FdV+I' S -'ndA, (4)

where dA and dV are infinitesimal area and volume elements. To make the notation simpler
we have omitted the bounds of our integrals, instead writing CV for an arbitrary control
volume, and CS for the surface of that volume. If we make the assumption that the pressure
forces are hydrostatic, then the acceleration in the vertical direction is negligible, and the
body forces must balance the surface stress to give hydrostatic pressure p - P0 = pg(h - y)
(see, e.g., [9]), where g is the acceleration due to gravity. We can use Stokes' theorem to
turn (4) into a volume integral, and after assuming again h. = h(x, t), u = u(x, t) we obtain

(bhu)t + (bh'u2 )T + 19b(,,2)x = 0. (5)
2

3.2 Smooth Hydraulic Flow

In this section, we are looking at flows which have reached a steady state. This allows us
to simplify (3) and (5) into

(bhu)x = 0 (6a)

(bhu 2 ) + 2gb(h2), = 0. (6b)

When the solutions are smooth we can expand the derivatives in (6b) to get

(1,,,2 + gh)X = 0. (7)
2

Next, introduce the local Froude number, F = uI/V/gl. Eliminating ux from (6) yields

U(2
- - (bh)± + bhx = 0 (8)

or
(1 - F2 )bhx = F 2 bU. (9)

Thus we see that if F = I then b must be stationary, or in our case at a minimum. Note
that the converse is not true, when b, = 0 we have that F = 1 or h, = 0 but not necessarily
both. We will define the flow to be subcritical when F < 1 and supercritical when F > 1.
Equation (9) tells us that for smoothly contracting b(x), the subcritical fluid flow must have
a mininmum in h, at the nozzle. Similarly, supercritical flow must have a maximum at the
nozzle, see Figure 4.

Next we will examine for what range of far field Froude numbers F0 = uo/v-gho and
contraction ratios B = b•/bo, we can have smooth solutions. Since the flow is smooth we
can follow the two constants of the flow

Q = boho'uo = bJh,icu (IOa)

E = u1,,./2 -+ g-,. = C/2 + .h,. (lOb)
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Subcritical Flow Supercritical Flow

Side view

- Top view

Figure 4: The shape of the free surface of supercritical and subcritical smooth flow through
a nozzle. Both the top view and a profile are shown in this figure.

If we non-dimensionalize, H = he/ho and B = bc/bo, then (10) is equivalent to the cubic

polynomial, p(H) = 0, with parameters B and F0 , where

PH H3B 1 2 2 1 2 0
P(H) =H B - (2F02 + 1)B 2H2 +2 F = (11)

4

3.5 Smooth Flows

3

2.5
0

I. 0 No Smooth Flows
2-

1.5

0.5-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
B

C

Figure 5: The smooth solution boundary is plotted in the BPFO-plane, where B, is the
nondimensional contraction width, and F0 is the ratio of the flow speed to the characteristic
flow rate of the fluid. We note that B, = 1 corresponds to a blocked flow and B, = 1
corresponds to a straight channel.

The stationary points of this cubic are at H = 0 and H* = 2(IF02 + 1). Now since

physically meaningful roots exist only for H > 0, we can determine when there are positive
roots by evaluating P(H) at H = H*. When p(H*) <= 0 there are positive roots, and
when p(H*) > 0 there are no positive roots. Thus the point p(H*) = 0 determines the
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boundary between smooth and nonsmooth solutions in the BcFo-plane. This is a standard
technique in hydraulic theory [7]. We obtain

3 F°)2/3 _ F,

2 R (1 +F2 0) = 0. (12)

Figure 5 illustrates how for a given geometry B, and incoming depth h0 there is a maximum
speed at which a subcritical smooth flow can pass. It is also interesting to note that for
channels with expanding width B > 1 we can find a smooth flow regardless of the speed.
In the next section we will look at non-smooth flows.

3.3 Upstream Moving Bores

Here we will look for solutions with a discontinuity, or jump, at one point. We will allow
this jump to move upstream at speed s, where s is positive when moving to the left, as in
Figure 6.

UO Ul Ucho h, hc
b0 b0 'bc Side view

S

X - Top view

,C X,
I 'X

Figure 6: Both the free surface profile and the planar view are shown. Here we have a shock
moving upstream with speed s. Conservation laws will be used to couple the fluid motion
between points £0, xl, and xe.

As in Figure 6, we will pick a point upstream, xo, one between the jump and the nozzle,
X1, and the point of minimum width at the nozzle, xc. We will label the width, height,
and velocity at these points with subscripts that match the respective points. The goal is
to find in which regions of the BFo-plane there exist shock solutions. We can couple the
flow at points w1 and x'c using Bernoulli's equation (13c) and conservation of mass (13b) as
before. The flow at points xo and x1 can be coupled by conservation of mass in the frame
of the junp (13a) and a jmnp condition (13d) which we can derive from the conservative
form of the momentunm equation. Consequently, we have four equations for five unknowns,
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so we impose the restriction that flow is critical (13e) at the nozzle, and obtain the system

(uo + s)hobo = (u, + s)hlbl (13a)

ulhibl = uchcb, (13b)

1 2 1 2
U,+ gh1  = -U+ gh, (13c)

(uo + s) 2 = gh1 (l+ hi (13d)2 ho
2 = gh,. (13e)

Taking a critical condition at the nozzle is a common assumption in hydraulics. It is
equivalent to imposing the restriction that there are no waves at infinity [5]. Now, we have a
system of five equations for five unknowns u1, UC, hc, hl, s, with parameters h0 , u0 , bi = b0, bc.
Nondimensionalizing B = bc/bo, Fo = uo/Vgho, Hg = h 1/ho, S = s/v/g-hI, system (13)

simplifies to

1(Fo + (1- 8)S)2 = 3 H2 o +(1BcI H1)S -2/3-- 8H3  (14a)

(FO0+ S) 2 = 2H1(1 +Hi). (14b)
2

Figure 7 shows the region of the BcFo-plane where (14) has physically meaningful solutions.
This region was obtained by first fixing H, and then finding the solution curves for S and
then fixing S and finding the solution curves for H1. The boundaries correspond to smooth
flow H1 = 1 and steady shocks S 0.
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Figure 7: The level sets of the shock speed (dotted lines) and height ratio (dashed lines)
are plotted. The solid line is the smooth solution boundary. Notice there is a wedge where
there are both smooth and moving shock solutions.
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3.4 Hydraulic Jumps in the Contraction

Here we examine for which flow rates F0 and contraction widths B, there can be steady
shocks. Steady shocks in a contraction are solutions to

uohobo = ulhib1  = u2 h2 b1 = uchcb, (15a)
12 12
2uo + gho = 2 u, + ghl (15b)

12 12
2 u 2 + gh 2 = 2u c + gh, (15c)

2 gh2 1+h
U 2 h2) (15d)

c 9h,. (15e)

These seven equations are mass and momentum balance between four locations plus the
critical condition. The four locations are the far upstream, h0 , uO, bo, the upstream limit
of the shock ul, hl , bl, the downstream limit h2, U2, bl, and the nozzle uc, hc, bc. If we
nondimensionalize as follows, H1 = h1 /ho, H 2 = h 2/ho, B, = bc/bo, then we can reduce
(15) to

1 1 1 H2HHH 0 (16a)4 H22 - ( 2F02 + 1)Hj + 4 I2+ H =(1a

H2 3 (FO)2/3H2 HH+H2 1 (
2H B, 4 0. (16b)

We will use (16) to find where in the FoB-plane we have steady shocks. A simple way to do
this is to consider what the boundaries of this region should be. If we have a shock we know
from the energy condition that H1 _/ H 2 [3]. Now if we look at where this upper bound on
H1 is satisfied with equality H, = H2, we can then reduce (16) to

1 2 +1 3 ( F0 /
3 ( F )2 /3 = 0, (17)

which is the boundary (12) of smooth solutions we already determined. This boundary
came from considering an upper bound on H 1. The other boundary should then come from
a lower bound. Since we are working here with supercritical flow in a contracting region,
we expect H, to grow the farther we move into the contraction. Thus the other boundary
should be when the shock is at the mouth of the contraction, or when H1 = 1. Substituting
this into equations (16a) and (16b) yields

-F6(F-)2/331 + 8Fo2 -6(°)2/3 + 8Fo2 = 0. (18)

This is the limiting curve we found for moving shocks when the speed goes to zero. Thus
we have steady shocks in the contraction only in the wedge of Figure 7 where we had both
smooth solutions and upstream moving shocks.

Next we examine the stability of steady shocks. Consider a system with a steady shock
in the contraction region, with ul and h, the upstream limit of the velocity and height at
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h2+hc

hl+hc J

Figure 8: Sketch of the unperturbed solution (solid curve) juxtaposed over the perturbed
shock (dashed curve).

the shock and 7,2, h2 the downstream limit. Now we will assume a small perturbation which
generates a shock moving at a small speed s, see Figure 3.4.

Let us present equations which govern the perturbed flow. The perturbations are de-
noted with a superscript c. The perturbed flow balances mass and momentum over the
shock

(. r u - s)(hi,1-4) + (U2 S +, " s)(h 2 + h') (19)

(01 + 7A + S s)2 (/,h + I,) +± (tI + h' )2  (U,2 + -1 + )2 (1h2 + h6) + 9(h 2 + 142.(20)
11 2 122 2 2+h (0

Mass will be conserved upstream of the jump

(, I + 111)(b + bV)(t I + It) = Q. (21)

We will assume that, the perturbation does not affect the far field momentum upstream E£

or downstream E2, so the Bernoulli constants are unchanged

11 2
(U2. + "u, )2 + 0( 12 + h1') E E 11 - + g02 (22)2 21 ('h -I 14 = £2= 12 h.(3

+-"u., I-n) 2 ± (,2+t,) E •2 h.(3

Now we assume that, we have a small perturbation and small resulting shock speed. Lin-

earizing all these equations gives a linear system of six unknowns and five equations

7'h]b-+-ulh, Vlb+ u]bh, = 0 (24a)

uIth.1 + shl + ul hIt - ii,2 h 2 - sh 2 - u 2 h, = 0 (24b)

21tit, (.•' + s) +-- h,. + qt,It,.' - 211,2 '12 (2 M s) - 11'U - gh 2h' = 0 (24c)

U]1u +g91 = 0 (24d)

U2U4 + gh4 = 0. (24e)

The goal is to reduce this to a single equation for the perturbed shock speed s in terms of
the change in channel width bV. If bV and s have opposite signs and we are in a contraction,
then the solution is stable, because the shock speed will force the shock back to its previous
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Figure 9: A sketch of the contraction region as viewed from above. The solid vertical lines

denote shocks. In a contracting region steady shocks are unstable, while in a dilation they

are stable.

position. If instead they have the same sign, then it is unstable, because the shock will

propagate away from its previous location, as shown in Figure 9.

After some algebra we obtain the relationship

s-- h2) B (25)

Here S = s//-gh1 and B' = bV/bo. We know that across a physical shock, h2 > h, and

also that u2 < ul, so this gives that sign(S)=sign(B'). Details of the above calculation are
found in an appendix to this work [1].

4 Results

Experiments were conducted over a variety of flow speeds and channel geometries. In each

experiment, the contraction width B, was set and then the flow rate Q was varied. The
inflow height was kept fixed for all experiments at h0 = 1.3cm. The upstream channel
width was also a constant b0 = 20cm. For each flow rate we recorded the category of the
flow, either smooth flow, moving shock, steady shock, or oblique shock. These flow state

are depicted in Figure 10. For moving shocks the speed and height ratios across the shock
were measured. There is an experimental difficulty, in that we cannot measure the speed of
fast moving shocks. When measuring a flow, there is a time delay between when we initiate

the flow and when it reaches a steady state. In this experiment the time delay is on the
order of five seconds. Thus for flows with shock speeds larger than 15 cm/sec, the shock
will move to the end of our channel before we can properly measure the speed. The data

for the moving shocks where we could measure both the speed and the height are found in
Table 1.

In addition to measuring the speed of moving shocks, we also took measurements when
we had oblique shocks in the flow. Oblique shocks are a stationary phenomena in our flow,

107



Smooth Flow Moving Shock

Side view

Top view

Steady Shock Oblique Shock

Figure 10: Shown are sketches of the four types of flow behavior. Each sketch shows a
profile of the flow and a planar view.

Bc = bc/bo Fo = u1o/V h0o H 1 = hi/ho S = s/V-gho
0.6 3.19 3.54 0.15
0.6 3.55 3.77 0.08
0.7 2.31 2.54 0.11
0.7 2.40 2.85 0.19
0.7 2.49 2.69 0.05
0.7 2.80 3.08 0.08
0.7 2.98 3.23 0.02
0.8 2.10 2.31 0.08

0.81 2.20 2.62 0.09
0.875 2.07 2.23 0.06

Table 1: The experimental data for moving shocks are presented here. B, is the nondimen-
siona,] contraction ratio; Fo the upstream Froude number; H1 the nondimensional height
ratio across the shock; and S the nondimensional shock speed.
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so we do not have the difficulty of measuring speed as in the moving case. There is a new

difficulty. When oblique shocks are very weak, surface tension effects will become impor-
tant, and rather than a shock, we see capillary waves in our contraction region. A picture
of this phenomena is shown in Figure 11.

Figure 11: Weak shocks can be distorted by capillary waves.

Since we only want to measure oblique shocks, we need a criterion to determine when
we have an oblique shock and when we have capillary waves. The criteria used here is that
when there is a measurable height difference between the fluid upstream and downstream
of the front, we call it an oblique shock. When the mean fluid height is the same on both
side of the front we call it a capillary wave. The data from the oblique shocks we measured
are presented in Table 2.

Hi = hi/ho Fo = uo/V 9-h o  0, 0,
1.9 2.79 9.5 26.7
1.5 2.94 3.8 26.7
1.7 3.13 9.5 27.1
1.5 3.32 3.8 21.6
1.5 3.37 5.7 22.1
1.9 3.47 7.6 25.4
1.7 3.56 9.5 20.1
1.8 3.65 7.6 25.2

Table 2: The experimentally measured flow variables for the oblique shocks are presented
here. H, is the nondimensionalized height ratio across the shock, F0 is the upstream Froude
number, 0, is the angle of the contraction, 0, is the angle of the shock, see also Figure 10.
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We measured the flow rate and geometry for every experiment. The different flow types
are plotted in the BFo-plane in Figure 12.

4-

3.5-E
3, 0

2.5- El 6

LL .0 

E C

2 - N

1.5 8

E8 8

0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
B

C

Figure 12: Experiments plotted in the predicted inviscid state space. Here circles are oblique
shocks, diamonds are steady shocks, squares are moving shocks, pluses are smooth flows.
Representative error bars are plotted on a smooth flow and a moving flow at B, = 0.875.
The thick lines are the numerically computed boundaries for the regions where an upstream
moving shock can be stopped via friction.
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5 Discussion

In this section we will compare the experimental results to mathematical theory. The models
used in this report assume no effects of surface tension or viscosity. The importance of
these effects are commonly measured using nondimensional numbers, Weber We for surface
tension and Reynolds Re for viscosity. Table 3 shows the range for these parameters in the
experiments considered.

Parameter Min Max
Reynolds (Re = UL/v) 1,300 20,100
Weber (We - pU2L/a) 1.85 433
Froude (Fo = Uo/ gx-h) 0.28 4.34
Contraction (B, = bc/bo) 0.6 0.875

Table 3: The nondimensional parameters are estimated for the main body of our flow. Here
We ,-t 14F2 and Re ,t 3300F 0 . If we look at some local phenomena, for instance near weak
oblique shocks, we can have smaller Weber and Reynolds numbers.

If we look at Equation (14) we see that for a given upstream Froude number F0 and
nondimensional shock speed S, we can predict the height ratio across the shock. We can then
compare this prediction to the measured height ratios across the jump. This comparison is
shown in Figure 13.

5.1 Oblique Shocks

All the analysis at the beginning of this report considered only I-D phenomena. Oblique
shocks are a two-dimensional (2-D) phenomena, so our model does not take them into
account. Following [2] and [8], we can derive a system of equations for the oblique shock
angle 0, and shock height hi. These equations will allow us to predict O0 and h, given the
upstream conditions h0 , F0 and the angle of the contraction 0c, as follows

hi _ tan 0, (26a)

ho tan(0, - O)

sin 1 h 1  h) (26b)

Using (26) we can plot our predicted oblique shock angles against the experimental ones.
This plot is shown in Figure 14.

In our experiments we saw oblique shocks that exit our channel before interacting with
another shock, and oblique shocks that intersect in the channel, see Figure 15. A similar
calculation was also done which can be used to predict the angles of intersecting oblique
shocks.
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Figure 13: The experimental height ratios are plotted against the inviscid predictions. The
dotted curve (diamonds) corresponds to the experimental measurements; the dashed curve
(triangles) to the inviscid p)redictions. The experimental measurements are systematically
lower than the predicted curve due to the effect of friction.
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Oblique Shock Angles
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Figure 14: The observed oblique shock angles (diamonds, dotted curve) are plotted against

the calculated angles (triangles, dashed curve).

--
Figure 15: The left image is a single oblique shock in an asymmetric contraction, F0 =

3.56, B, 0.75. The right image shows the intersection of two oblique shocks in a symmetric
contraction, F0  3.65, B, = 0.7.
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5.2 Turbulent Drag

If we examine Figure 12 we see that there are steady shocks outside of the region predicted
by the inviscid theory. To explain this, we must reexamine the assumptions of the original
model. The real fluid does have some viscosity, so we should take this into account. In the
hydraulic equations, viscous effects are usually added with a drag term. The most physical
drag term comes from a quadratic drag law [3]. Adding such a term changes the hydraulic
equations (6) to the system

'au, + ghT = -Cdu, 2/h (27a)

(buh), = 0. (27b)

This system of ordinary differential equations (ODE's) can now be solved using standard
numerical techniques. When we do not have smooth solutions we can find steady shocks
by using the inflow conditions at the sluice gate and critical condition at the nozzle as
boundary conditions to march the solutions together until they match with a shock.

Fc=I

F0 _

150cm

Figure 16: A cartoon of the numerical method for finding steady shocks. We use an ODE
solver to find the smooth flow with a prescribed upstream Froude number F0 and the smooth
flow that meets the critical condition F, = 1. These two smooth flows are then matched
using the shock condition.

Depending on the Froude number F0 and geometry Be, we may or may not be able to
have a steady shock of this type. If we solve this system throughout our state space we get
numerically computed boundaries for when we can have steady shocks with friction. These
boundaries are plotted in Figure 12. For our computations we have used Cd = 0.004 [4].

5.3 Multiple States

In our inviscid calculations, we predicted a region in the B-Fo-plane where we can have
three different steady states: steady shocks, moving shocks, and supercritical smooth flows.
We have shown that the steady shocks in the contraction region are unstable, so we don't
expect to see these. We also have observed that friction can stop slowly moving shocks, and
that supercritical smooth flows correspond to oblique shocks. Thus this region of multiple
states really corresponds to flow speeds where we can have upstream steady shocks, stopped
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via friction, and oblique shocks in the contraction region. These phenomena were observed
in the lab. Figure 12 shows both oblique shocks and steady shocks in the same region of
state space. We also observed that large perturbations of these flows can cause the flow
to change from one steady state to another. If we have a steady upstream shock, we can
physically push most of the water that is behind the shock out of the channel, and see a
steady oblique shock. If we have an oblique shock, we can block the flow for a small time
period, and the resulting flow will evolve into a steady upstream shock. Figure 17 shows
snapshots of the transition from oblique shocks to an upstream steady shock.

Figure 17: Shown are snapshots of the flow transition from oblique shocks to a steady
upstream shock. The time interval between each frame is 1 second. Here we have the
Froude number F0 = 2.8 and the contraction ratio B, = 0.7. A ruler is used to restrict the
flow for a small time period to induce this state change.

6 Conclusion and future work

We presented a mathematical and experimental investigation into shallow water flow through
a contraction. We began by making predictions using a simple 1-D inviscid theory. We saw
that for slow speeds this 1-D analysis performs well. For higher speeds boundary drag be-
comes important and we saw a departure from the 1-D inviscid predictions. The addition
of drag forces improved the performance of the 1-D theory. To predict oblique shocks, a
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fundamentally 2-D feature, we had to use the 2-D shallow water equations.

We also set out to investigate the existence and stability of steady shocks. We presented
a perturbation method for finding when steady shocks in the contraction are stable. Ex-
perimentally we observed that shocks which are stopped via friction are stable. If we look
at how the shock speed depends on flow rate, see Figure 7, we see that there is a heuristic
stability result which agrees with our predictions and observations. When the flow rate is
increased, shocks move slower, and when the flow rate is decreased shocks move faster. If
we apply this knowledge to a steady shock, we see that in accelerating flows, steady shocks
will be unstable. If we displace a steady shock upstream in an accelerating flow it will
have a faster speed, and will move upstream. Also downstream displacements will generate
slower speeds, and the shocks will move downstream. A similar argument shows that in
decelerating flows steady shocks are stable. This argument is incomplete however, in that
it does not deal with flows where the velocity is not monotone. This is precisely the case of
a steady shock in a contraction, so here we used the perturbation method of [4].

There are a variety of avenues for future research illuminated by the experiments and
analysis presented here. First, we have observed that supercritical flows that are 1-D smooth
have additional 2-D shock structure which is not accounted for with 1-D theory. In the ap-
pendices of this report [1] we have predictions for some of these 2-D structures. We also
observed a structure like a Mach stem near the intersection of two oblique shocks. This
structure has not been accounted for in the work presented in this report. Another avenue
for future research is to use this work in conjunction with [2] as a base for investigating shal-
low flow of composite media, i.e. water carrying sediment. Also this report does not include
analysis of the time dependent problem. Here we could investigate the relationship between
initial data and steady state in the region of multiple steady states. Future work is currently
being done to compare 2-D simulations with experimental results. A few experiments have
been done on Mach stems and adding polystyrene beads to simulate granular media. For up-
dates on the current state of the work, see http://www.math.wisc.edu/-akers/contraction.
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Figure 18: Here are snapshots of an experiment where polystyrene beads are impulsively

dumped into a flow that exhibits three states: upstream shocks, Mach stems, and oblique

shocks. The flow begins in the state of oblique shocks, with F 0 = 3.08, B, = 0.7. Beads are

dumped into the flow, and the resulting flow is an upstream shock.
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Bounds on Multiscale Mixing Efficiencies
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1 Introduction

We are motivated by the following problem: given the heat sources and sinks on the Earth and
a stirring field with certain statistical properties what are the maximum and minimum possible
degrees of temperature variance that must be present? The flow in the Earth's atmosphere is an
example of a stirring field which acts to redistribute heat. Here we are interested in the optimal
solution to this redistribution problem. We expect any stirring would suppress fluctuations
in the temperature field and lead to a more uniform distribution, but what kind of stirring
minimizes the variance? Can we, given some bulk statistical properties of the stirring field,
derive bounds on the variance? What are the characteristics of a good stirring field and how do
they depend on the source distribution? Can we define and estimate the eddy diffusivity and
mixing efficiency of a stirrer on different length scales? Here we work toward answering these
questions by computing rigorous bounds on multiscale mixing efficiencies.

Bounds on mixing have important implications in both physics and engineering. Thiffeault,
Doering, and Gibbon [5], hereafter TDG, have shown how techniques used to bound bulk dissi-
pation quantities in the Navier-Stokes equation [2] can be applied to the advection-diffusion of a
passive scalar maintained by a steady source. They derived rigorous bounds on the scalar vari-
ance and defined an equivalent diffusivity, the diffusivity required to produce the same amount of
mixing in the absence of stirring. Plasting and Young [4], hereafter PY, enhanced that analysis
by including the variance dissipation as a constraint.

Here we construct bounds on the multiscale mixing efficiency of a sitrring field for a passive
scalar maintained by a time independent but spatially inhomogeneous source. We focus on
the mixing efficiency of a stirring field on different scales by considering the fluctuations of the
variance, gradient variance, and inverse gradient variance. Comparing the three measures (the
variance, gradient variance, and inverse gradient variance) gives a range of information about
the stirring properties of a flow. It has been recognized that LP norms of the passive scalar
fail to quantify the stirri'n9 efficiency of a mixing process because they are insensitive to small
scale structures [1]. We gauge the effectiveness of a stirring field based on its ability to suppress
variance relative to the variance in the absence of stirring. On all scales, a smaller variance
implies the velocity field is a better stirrer. Thus, a velocity field that gives a larger mixing
efficiency than another will be considered more efficient with respect to a particular measure.

Our approach for bounding the multiscale mixing efficiencies follows that of TDG. The
bounds are derived in section 3. In section 4 we show that the bounds for a monochromatic source
on the torus can be saturated. In an effort to distinguish the three measures more convincingly,
in section 5 we investigate the efficiency of' a steady shearing flow for a. monochromatic source
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using boundary layer asymptotics. Finally, in section 6, we find bounds on the multiscale mixing
efficiencies for a decaying passive scalar maintained by a spatially inhomogeneous source.

2 Advection-diffusion in a space of d-dimensions

The advection-diffusion equation of a passive scalar with a body source s(x) in a d-dimensional
domain (d = 2, 3, ... ) is:

00
-+ u- V0 = 'A0 + s(x) (2.1)

where s(x) is a source with spatial mean zero without loss of generality and r. is the molecular
diffusivity. Since the body source has spatial mean zero the passive scalar will also have zero
spatial mean. The velocity field here is a given steady or time-dependent L2 divergence-free
vector field. The velocity field could be a solution of the Navier-Stokes equation or a speci-
fied stochastic process. We will focus on a particular class of stirring fields that are steady,
statistically homogeneous, and isotropic with single point statistical properties characteristic of
Homogeneous Isotropic Turbulence (HIT):

U
2

Ui(x,-) = 0, Ui(x, .)uj(x,.) - ij (2.2)

and

Ud X, ) uj(X, -0, Oui(x,-) aju(x,.) F2

, 9Xk &Xk OXk d(2.3)

where where U 2 := (1u12 ) is the kinetic energy density, A = U/F is the so-called Taylor microscale

for HIT, and the overbar denotes the steady average defined below. Let us define the advection-
diffusion operator and its formal adjoint:

£ := Ot + u. V - rA, C1 := -at u-u. V- KA. (2.4)

We also define the steady average (assuming it exists),

1 ft
F(x) := F(x, t')dt', (2.5)

and the space time average,

(F) F(x)ddx. (2.6)

From here on our domain will be a periodic box of size L, i.e. x C Td, the d-dimensional torus.
The Fourier decomposition of the spatially dependent variables are written conventionally as

F(x,t) = Ee eikxF(k) where F(k) = 1 j e-ik'xF(x, t) ddx (2.7)
k

and k = (27r/L)n for n = (nj, ... , nd). The L2 norms of derivatives of the passive scalar will be
denoted, for example,

(IVpOI 2) - E k2PIO(k)12. (2.8)
k
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The conventional non-dimensional number measuring the relative importance of advection to
diffusion is the PNclet number

Pe := UL (2.9)

K

A standard measure of the well-mixedness of a scalar field is its variance (presuming spatial
mean zero) [1]. Weighting the variances at different length scales introduces a family of variances
that are sensitive to mixing on different scales. The variances (lVp012) for p = 1,0, -1 measure

mixing on small, intermediate, and large scales respectively. To gauge the effect of stirring, the
variances are compared with variances in the absence of stirring (IVPo00 2) = K-2(JVpA-1 sI 2)
forp = 1,0,-1.

We define a non-dimensional mixing efficiency for each scale p

(IVP°°12) for p= 1,0,-1 (2.10)(,. lwp012)

which increases as stirring increases. The mixing efficiency has the advantage of depending only
on the structure of the stirring and source and not on their scales.

The equivalent diff'usiviiy is the equivalent amount of diffusivity required to achieve the
same degree of mixing in the absence of stirring (i.e. a corresponding diffusivity for the diffusion
equation) and is defined as

theq,p ;= K (VwOO012)1/2 (2.11)

Equivalent diffusivity should not be confused with effective diffusivity defined in homogenization
theory. The effective diffusivity is defined in terms of large-scale transport, i.e. in the presence
of large scale gradients of the concentration (G. Papanicolaou lectures) [6]. The equivalent
diffusivity is specific to the source and stirring. Lower bounds on the variances provide upper
bounds on the mixing efficiencies. These bounds depend on details of the source and stirring as
shown in the next section.

3 Bounds on the multiscale mixing efficiencies

Following the method developed by TDG we derive bounds on the multiscale mixing efficiencies.

3.1 Bounds on variance

Multiplying (1) by a smooth, time independent, spatially periodic projector function #(x),
taking the space-time average and integrating by parts we obtain

((u . V + KA)P) -(s). (3.1)

A lower bound on the variance is achieved via the variational principle

(02) > nax•nlin {(O2 ) I (M(u Vý± + KAý)) = -(cOs)}. (3.2)
V_ 6

We note that TDG derived bounds on the mixing efficiency without optimizing over (p. The
optimization over 0 is equivalent to applying the Cauchy-Schwarz inequality

(02) > max (u ) (.s)' (3.3)
V (U 12VV + KA0) 2 ) (PZtý)
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Maximizing over ýp is equivalent to minimizing the denominator over p. We constrain p to have
a unit projection onto the source. The corresponding variational problem is:

< minf {((£t#t) I (ýps)= 1}. (3.4)

Thus we must minimize the functional .T = pK t -½(-/s- 1)), whose Euler-Lagrange

equation is

5 - t= -/Ps = 0 (3.5)

where p is a Lagrange multiplier to enforce the constraint. The minimizer is (after some algebra)

-M0 s (3.6)
S-(sMos)

where M 0 := (t£t)-1 and

(sAMos) = (s{,n2A 2 - V-(-il) + K(2Vii: VV + All. V)} 1-s). (3.7)

Thus we obtain the lower bound

(02) >_ (sMos) (3.8)

which depends only on the mean and quadratic correlations of the stirring field. For flows
satisfying HIT this simplifies to the quadratic form

(sMO0s) = (s{Ic 2 A 2 
- (U 2 /d)A}I-s). (3.9)

This lower bound on the variance depends on the source function and on the stirring. In
Fourier space it is expressed as

(92) S (k) 12  (3.10)__}>-•, •KO+ v2k2/d"
k

An upper bound on the variance may be obtained from simple application of the Cauchy-
Schwarz and Poincar6 inequalities to the bulk variance dissipation constraint:

SL2 <1V-KS1 2 > (3.11)( > -< 47r2 K2

The variance in the absence of stirring is
1

(9) ((A (3.12)

and thus we obtain bounds on the mixing efficiency from bounds on the variance

47r 2 (IA--1s 2) < M2 < E (k)12 E 19(k)12  (3.13)
L2 (IV-'S12) - k / k4 + pe2k2/d(
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One might expect the variance efficiency to have a lower bound of 1, implying that stirring
always decreases the variance. We can search for a sharper lower bound by actually optimizing
the variance subject to the variance dissipation constraint

(02) _> Min {(b 2) I /.(IV012) = (sO)}. (3.14)
6

That is, we can seek the minimum possible variance subject only to the entropy production
balance. The solution of the optimization problem in Fourier space is

1(k) =-I (k) (3.15)
2 t•k2 + A

where A = -1/2yi and p* is the Lagrange multiplier. Enforcing the constraint,

k 21(k)12k -o(k)*(k) > K,z E k21ý(k)12  2 (k)12 (3.16)
(tKk 2 ±+A) 2  Z- K2-+-A (.6

where * denotes the complex conjugate.
In the case of a monochromatic source this simplifies to

K= 2 k2  2(k 2 +A) A k (3.17)
(Kk 2 +±A)2  Kk 2 =A --+ ( 2

and hence

Sk) 
2 - 0o(k) (3.18)

which implies M0 A> 1.
In the case of a dichromatic source (k/ with amplitude sl, k2 with amplitude s2), the con-

straint requires one to solve a cubic equation for ý = A/k 1

(1 + a)3 + 1(1 + o,3 + 4/3 + 4a)±a + (0 + o +/32 + o) + 1(02 + a/3) = 0 (3.19)
2 2

where a= CI/c2, /1 = 1//1,2 c = s8, c2 = s2, /. = ,, and /P2 = rk2. Then the mixing
efficiency is

_o (k)12 4(1 +0)

I ̂ - 1 
(3.20)10(k ) 12 T1 +- + --7

The efficiency goes to I in the monochromatic limit a 0 (• -- -1/2) as expected. But the
minimum value the efficiency bound is less than 1 for V ý implying that the variance dissipation
constraint is not sufficient to guarantee that there are no stirring flows that could possibly
increase the scalar variance. So this analysis does not rule out the existence of ineffective

stirring fields.

3.1.1 Delta function source

Here we consider a 6-function point source (measure valued) with Fourier coefficients I(k) I = 1
as IkJ -- oo. We note this includes white noise sources. As we are interested in the high-Pe
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limit we approximate the sums in (3.16) by integrals. The asymptotic form of the upper bound
is

M ([ccf k dldk 00 kdl'dk
M LIL 0 ) 2,I/L k4 + U2 k2  (3.21)

Letting = kL : 27r --- oo we obtain

M02x < 0 0 d-ld- -1(( (3.22)
\J27r U/ e2ýd

For d = 2 the integrals become

f 0 f _0 __6d6 log Pe (3.23)

2 -3d6 = 87r2 ' 2 4 + Pe262/2 pe 2

resulting in the asymptotic bound

Me < Pe (3.24)
log Fe

In d=3

fc-d6 =!_____ 1 (3.25)

I2d, 27-' 64 + pe 2 ý2 /2 Pe

resulting in the asymptotic bound

.M0 <• v/-Pe. (3.26)

An efficiency scaling of Pe leads to an eddy diffusivity proportional to UL from (3.2). For d = 3
there is a dramatic modification to the scaling that implies the eddy diffusivity is proportional
to V/-•.

3.2 Bounds on the gradient variance

Beginning with the first step in the TDG procedure

(9(u. V + tcA)•) = -<Us (3.27)

we integrate by parts and apply the Cauchy-Schwarz inequality to obtain

<•s>2 = ((u( + KVýP) . VO) 2 < (I u + r'Vý12)(<V012 ). (3.28)

The sharpness of this bound is discussed at the end of this section. Continuing as usual, we
construct a variational principle to obtain a lower bound on the gradient variance

(IVOl2) > max (ps) (3.29)

Thus we minimize the denominator subject to the constraint of sp having a unit projection on
the source. Under the homogeneity and isotropy assumptions of HIT the variational problem
becomes one of evaluating

min {(i[IVý 2 + U 2 • 2 ) I (pOS) - 1}. (3.30)
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We want to minimize the functional T7 := K½(KIVpI 2 + U2' 2) - py(sp - 1)). The solution of the
optimization problem is (after some algebra)

(IVOI 2 ) > (sMis) (3.31)

where A4, = (-, '2• + U 2 )- 1 .

A sharp lower bound on the gradient variance is easily proven. Upon taking the inner product
of 0 with the advection-diffusion equation we obtain the variance dissipation constraint

K(IVOI2 ) = (sO). (3.32)

Inserting V-'V = 1 on the right hand side, integrating by parts and applying the Cauchy-
Schwarz inequality, we deduce

,•I01V~2) <_ (IV-is12) = ,r2(1VOo12) M, >_ 1. (3.33)

Hence stirring always reduces the gradient variance which was not proven for the variance
(previous section).

Given the upper and lower bounds on the gradient variance we can bound the small scale
mixing efficiency according to

1 (IV-'sj 2)
1 <_ Ml K2 (sA41 s) (3.34)

In Fourier space this is

1< A12 < (z k2 ) (2 (k)12 -1
k2 k2 + U2 (3.35)

These bounds only make sense when the sums on the right hand side converge.
Note that, if tK --+ 0 and if s(x) E L2 then

U• ( •(k)2 I ()12 (IV-IsI2 ) U 2  2 2
.A12  U, (k)_ 1\~iu2 i - -

K kj~ k2 ) (~ k (S2) K2  K2 (336

where f, = (IV-lsI2 )l/ 2/(s 2)1 /2. So if s G L 2 then M1 < Pe, but if s € L2 then /1 = 1 i.e.
there is only suppression of gradient variance if U(lV-s12)1/ 2/ )1s2)1/2 > i.

Here we re-examine our application of the Cauchy-Schwarz inequality which was the first step
when deriving an upper bound on the gradient variance. In fact the analysis can be improved a
bit. We expect the bound to involve only the curl-free part of the field u( + KVp. This can be
seen by first evaluating

mmin {l(VOl 2) I (ýss) (uO + K'V ) VO)} (3.37)

with functional J7 := (I½IV012 + \(v •V - ps)) where v = up + KVp. The solution to the
variational problem is (after some algebra):

( ) - - , - v1 (3.38)
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The inequality follows immediately from examining the Fourier representation of the denomina-
tor. Note that we can decompose v as follows

v = v- VA- 1V v+VA-'V v. (3.39)

divergence - free curl - free

The denominator above is

((V . v(-A-')(V • v)) = ([AA=1 (V• v)](-A-1)(V • v))

= (V(A 1 (V v) . V(A'(V. v))

(IVA- 1 V. v12 ). (3.40)

From this it is clear that the explicit optimization over 9 yields a sharper bound by picking out
the component of v which is curl-free.

Interestingly, this new bound depends on the two point correlation and involves a non-local
integral operator i.e. for d = 2

( ')V JdxJ dyV. -v(x)G(x - y)VI v(y) (3.41)
((V j j)- dy- V) =vy)

where G(x - y) is the Green's function of -A. After integrating by parts
1/

v)(-A')V . V) = Jdx dy(-VVG) '--V (3.42)

where under the homogeneity assumption,

vV-- = W(x)g(y)u(x)u(y) + r 2 VW(x)VW(y). (3.43)

It is the first term that prevents the expression from collapsing to Iv12 (the second term
becomes .2 (AW) 2 after integrating by parts). The first term depends on the two-point correlation
of the velocity field. Under the assumptions of HIT, the velocity field has single-point statistical
properties and hence the first term collapses to U2.p2 /d which implies that for HIT a strict
application of Cauchy-Schwarz (without minimizing over 0) yields a sharp bound. In turbulence
theory, the two-point correlation for Homogeneous Isotropic Turbulence is written as

ui(x, .)uj(y,.) = ,g(lx - Yl) + (Xi- - ) - g). (3.44)
IX -y1

Incompressibility implies that g(r) = f(r) + rf'(r)/(d - 1). This new bound introduces de-
pendence on the two-point correlation property of the velocity field. The implication of such
two-point statistical properties on the scaling of the bound will be the subject of future inves-
tigation. We note that the Cauchy-Schwarz bound cannot be improved for both the variance,
because it is a scalar field, and the inverse gradient variance (next section) because it manifestly
involves a curl-free field. We will revisit the implications of the two-point statistical properties
when we examine the bounds including scalar decay (section 6).

3.2.1 Delta function source

It is clear that a 5-function or white noise source (1g(k)l - 1) will cause the sums in (3.37) to
diverge in both d = 2 and 3. Thus, in the case of S-like sources or sinks the mixing efficiency
bound is sharp and equal to 1.
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3.3 Bounds on the inverse gradient variance

Beginning again with the first step of the TDG procedure

(Ps) = -((u V + K A)0)

(V(u Vy + tAo) • VA-10)
<_ (IV(u, VýO+ K'AO)I 1) 1 ýIV -10,)12). (3,45)

Continuing as usual, we construct a variational principle to obtain a lower bound on the inverse
gradient variance

(IV-10[ 2 ) > max O(u s ) 2 (3.46)- , (IV(,,.VýO+K'AWl)

Thus we minimize the denominator subject to the constraint of 7o having a unit projection on
the source, i.e. we evaluate

nin {(Vu). VW+ u. VVp + KVAW[2) I (ps) = 1}. (3.47)

The assumptions of HIT simplify the problem:

I(VU) . VýO + U. VV( + ='Aý1 (VW,) _mi* (VW,) + VýO [(VU)tr(Vu)] .V ý + K2 VO1
= ,21/AV1 2 + (r 2 /d)IVW12 + (U 2/d)(A (P)2 . (3.48)

Thus the variational problem reduces to evaluating

minm {(,• 2IVA(I 2 + (F2/d)IVW1 2 + (U2/d)(AW) 2) I (PS) 1} (3.49)

The solution of the variational prol)lem is (after some algebra)

(IV- 1O1 2) = (SM_S) (3.50)

AI (K (2A3 _- (F 2/d)A + (U2/d)A 2 )-1. A lower bound on the inverse gradient variance is
obtained from simple application of the Cauchy-Schwarz and Poincar6 inequalities to the bulk
variance dissipation constraint:

ýIV-1Ol2) <_ L5 8 2(IVS12). (3.51)

Because it. uses the Poincar6 inequality the lower bound is only sharp if the source is monochro-
matic at the lowest wavenumber, 27r/L.

Given the upper and lower bound on the inverse gradient variance and the value in the
absence of stirring, (IV-'A-'s1 2 ), we obtain bounds on the mixing efficiency on large scales

25&67 8 (V-]A-lS12) (IV-'A-ls 2 ) (3.52)
L8 (IV1s 2) (sA4 -1 s)

In Fourier space,
(•) )-1( •' :)(k'• -1

256&8 (E1(§kl2) ()<2)( : 2 -< 3-•1 <,2) ( 6 ±+ J/ +2 )(3

L8 ks 6 /(k)/ (k Vlk6+U2)0+r2 k2 (3.51)
k k kk-"7 d-
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For a monochromatic source the upper bound is

M2_ •1+ d 2k--+ d 2k-l 1+d ( +I+ 1+ + 1 ) (3.54)

where we define Pe = U/Kk. Note that the efficiency depends on the shear in the flow directly
through F. Interestingly, F allows for an increase in the mixing efficiency on large scales via
stirring on small scales (coupling the different scales). We investigate this potential effect for a
steady shearing wind in section 5.

3.3.1 Delta function source

Consider a 3-function source (measure valued). Suppose n -- 0 while U2 and F2 are fixed then
the asymptotic form of the upper bound is

g2 k• d-ldk• 00c k d-ldkg )-

Mj kId <( k ~ k (3.55)-1 2, /L 06 ] ,•/L 0 + -L2- + -L2k2 (.5
k\Jdie 2  die 2

Letting • = kL/27r : 1 --- oo we obtain

/- < d7dý 0 d- 3d6 12 4 )- (3.56)
([C ~-7d ( ~ --~ + -16irý ýdi

In d=2, letting r7= 62

j 47 1 j ' + e-2c+ L2 Fe
2  2 j 71rq (3.57)

where a = Pe 2/d and/3 - L 2Pe 2 /A2 d. In the limit Pe -- 00

6__ ___-ld6 1 d77 (3.58)

I + -e 2 62 + L2 2Ji 2 7-7- +

After some algebra we find

6 -'d6 - In 1+ (3.59)
d + 2/3 a-

note that 3/a = L2/A2 . The efficiency bound becomes (as Pe --+ cc)

M2 < 0 1 =Pe2L 1 (3.60)-2 In l+ A2 In 1+L

Interestingly, the prefactor can be larger for smaller scale flow.
In d = 3

jsy•4d = 00 < +00 - d[ (3.61)
64+fe22 + (LL)2Le 11 Pe(62 +L2

after a change of variables 77= -A6 --, cc

±2-P-•----• dP A d772+1 PeL -arctan (3.62)

hence

M! < L Pe2 1 (3.63)
(1 - arctanL)
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4 Saturating the multiscale mixing efficiency bounds

The HIT bounds on the multiscale mixing efficiencies derived in the previous section simplify in
the case of a monochromatic source

MA/1 • V1 + Pe2 / k'2, (4.1 a)

M0 < N/1 + Pe 2/k,2d, (4.1b)

M- 1 < Ji + Pe 2/k2d + L2Pe 2/A2k4d (4.1c)

where we have rescaled [0, L]d to [0, 1]d so that k, is a multiple of 27r. We note that each
efficiency scales as Pc which corresponds to replacing the molecular diffusivity by an eddy
diffusivity proportional to UL. An anomalous scaling results if the efficiencies are not linear
in Pc. Figure 2 from TDG showed the mixing efficiency Mo versus P6clet number from direct
numerical simulations (DNS) of the advection-diffusion equation for a monochromatic source
sin ksx and the Zeldovich sine flow [3]. TDG discussed the possibility of saturating the upper
bound for the sin ksx source; however it was clear from the DNS calculations that the sine flow
was not the optimal stirrer and no other stirring field was put forth.

Here we show that the TDG upper bound on the variance for s(x) = sin ksxl and x c Td

i.e., x E [0, L]d, is saturated by the sweeping flow suggested by W. R. Young. Consider the
steady advection-diffusion equation with source s(x) v/'2S sin k8 x] and uniform stirring field
u(x) = (U/fl) Zd=l ij:

7d=_ _E __ + v"2Ssin(k/xi). (4.2)

We sweep on an angle for a long time (to kill the transients) and then switch the sweeping by
an appropriate angle (repeating appropriately) as to satisfy the HIT assumptions.

Letting 0(x) d= Fj-(x.), we end up with a system of constant coefficient ODEs

d2F _ U dF1 + JS sin(k~xi) = 0 (4.3a)
d&r dK dx K,

d2 Fn U dF1,
-__ - =0 for 2<n< d (4.3b)

dx2 I•t- dxI - -

with periodic boundary conditions F ,(O) Fn(L) whose solution is

2) [= SL 2  
- UL cos(kxri)l (4.4a)

(4rr 2s,2 + !iL2) Lxr 7d
F,=0 for 2< n< d. (4.4b)

The variance is

(02) = (42K2+-L24 K 2 + U2-L 2  (4.5)

and since (0ok) - S2L4 /1 x4 L 2 the mixing efficiency is

= U2L2  _ pFe 2

Mo = = V 4 + - 1 2+ (4.6)
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which is the bound derived by TDG. Given the steady solution we can compute the other two
mixing efficiencies. After some straight-forward algebra we find

MV/ 1  -d Mo. (4.7)r Pe2
Mi = M-1 =V1 + 4-7-2d=MO(47

Interestingly, M0 and M- 1 are precisely saturated but M1 is off by a d factor. Since the uniform
flow lacks shear the large scale mixing efficiency, M- 1 , is identical to the others.

The result is fairly intuitive: to reduce the variance (on any length scale) one should simply
blow the source onto the sink and vice versa - if one can do this simply. We note that this type
of sweeping flow is somewhat pathological in the sense that it simply transports the source onto
the sink which can be done simply on the torus. There is no dependence on diffusion. However,
such sweeping flows are not allowed on the sphere or in bounded domains. Furthermore, the
sweeping flow is not optimal for non-ID sources. This makes it clear that the optimal stirrer is
a function of both the source shape and the domain. Formulating the optimization problem for
the optimal stirring field is a subject of current and future investigation. It is a nasty non-linear
problem.

To emphasize the relationship between the source and the stirring field which saturates the
bound we perform an analogous calculation to the previous one (for d = 2,3) however we impose
a 6-function source distribution. Taking the Fourier transform of the steady advection-diffusion
equation with s = 6(x) we obtain

6(k) Z (k) (4.8)k 0 k) = + i~kd
k k

where kd is the dth component of the horizontal wavenumber. Approximating the integrals by
sums (we are only interested in the asymptotic behaviour)

d = 2: (1VO o2) = [2, d 0 k2P+'dk (4.9a)
JO E= r/L t; 2k4 2 -U2 k2 cos 2 0

d = 3 ( IVPO12) = 2 w do sin OdO Jk2(4
d10 3: 17r/L -r-20 + U 2 k 2 cos 2 0 *

The variances in the absence of stirring are found by calculating the above integrals with U = 0.
Straight-forward evaluation of the integrals yields

47r 87r

d = 3: M, = 1, Mo - V/,T Pe og c2) M-1 ",2 v"-3-----e (4.11)

The anomalous scaling in Pe suggests that the uniform flow is far from the optimal allowed by
the bound for the 6-function source in both d = 2 and 3. This emphasizes the source-dependent
nature of the optimal stirrer.

Given that the the optimal HIT stirrer for s = sin ksx was at an angle, the calculations from
TDG were repeated for a tilted source and the Zeldovich sine flow to see if we could get closer
to the bound. Tilting the source is equivalent to tilting the stirring. Figure 1 shows the results
of the DNS calculation for p = 1, 0, -1. The plot of M0 includes the PY bound. What is clear
from this figure is that for a non-optimal flow the three bounds scale differently in Pe. In the
next section we investigate the bounds for a simple steady shear flow in an effort to understand
the scaling in Pe as well as to explore the dependence of All on the Taylor microscale.
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Figure 1: From left. to right, mixing efficiencies Alp p 1,0, -1 for the Zeldovich sine flow with
source sin k(x + y). The solid lines are the respective upper bounds from section 3. The dotted
line is the PY variance bound and the dashed lines are the result of direct numerical simulations
with U fixed.

5 Steady Shear Flows

From the previous section it is clear that the most efficient stirring for monochromatic sources
on the torus is the sweeping flow. Here we investigate the effect of shear on the mixing efficiency
on different scales to understand the scaling behaviour at large Pe (i.e. the scaling when we do
not saturate the bound). The results would directly apply to HIT stirring analogous to blowing
for a very long time (the sine flow having a long period). From the analysis of section 3 we
would expect to see a large difference between the three norms for such sheared stirring. We
treat the simplest problem by considering the long time behaviour of a passive tracer goverened
by the advection-diffusion equation

u VO = KA0 + s(x) (5.1)

with a stirring field u = v/-2U sin k/yi and source s(x) = v'2Ssin kx (v'2 for normalization).
Here the domain is the 2-dimensional torus x .E T2. The non-dimensional number governing the
amount of shear is r = kl/k,. We are particularily interested in the limits Pe >> 1 with r fixed
and r >> 1 with Pc fixed. The solution takes the form

0(x) = f(y) sin(kx) + g(y) cos(kx) (5.2)

which results in a system of ODEs:

-v-UkLsin(k,,y)g(y) = + [k2 ± dy2 fj(Y) + V2S (5.3a)

12Uk, sin(k, y)f(y) = k + g(y). (5.3b)

The stirring field is an odd function of y and hence from (5.4a) we deduce that g(y) is also
odd in y and hence that f(y) is even in y. This can also be seen by integrating (5.4a) over a
period. Since the functions f(y) and g(y) are periodic we consider the domain y E [0, 1/2] where
S= 27/rp. We infer boundary conditions given the even-oddness of the functions f and g:

g(0) = g(I/2) = 0, f'(0) = f'(I/2) = 0. (5.4)
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Upon setting • = ksy, f fUks/S, [ = gUks/S, r ku/ks, and Pe = v/2U/rk, we obtain the
non-dimensional ODEs

[ [1 + ](•) + 1 = -sin(rj).?()) (5.5a)

[ [1 + 2](•) = sin(rý))(•). (5.5b)

The next sections outline the boundary layer analysis (since the solution is slowly varying except
in isolated boundary layers) and regular perturbation theory which were used to investigate the
limits mentioned above.

5.1 Boundary layer solution

This is the limit Pe >> 1 and r fixed. Proceeding as usual, we construct an inner and outer
solution. The outer solution is obtained by expanding in powers of Pe-':

00 00

f 0 =t ZE'e-f., §,o. = pe-gn. (5.6)
n=O n=O

Thus, in the outer region the solution is approximated to leading order by

L = 0, § = 1 (5.7)
sin(kuy)"

The boundary layer scaling was determined from a dominant balance argument. The left hand
side of (5.6a) is 0(1), V E thus we choose E = Pe-1/ 3 and rescale y: r7 = ý/c to achieve a
self-consistent scaling of the leading order terms. Expanding in E according to

00 00

]inn Cfn' §rn= En §n (5.8)
n=-I n=-I

(note that the leading term is (9(1/e)) yields at order 0(1/c):

d 2 f + f ~ 1 0 dr2[_
dr 2 f I -+-i 

= 0. (5.9)

Letting • = rl/ 3rq, F = r2 / 3 f1, and G = r 2 /3§ 1 this simplifies the system of ODEs to

F"+ -+l6G+1 =0, G" -F= 0. (5.10)

with boundary conditions

F'(0) =0, G(0) = 0. (5.1 r)

The other boundary conditions come from the requirement of matching to the outer solution:
F(6) -* 0 and G(6) -- -1/1 as 6 -* oo.

We note that this system of ODEs can be cast into the Airy equation with a complex
argument O(z) = F + iG but we resorted instead to shooting to get the solution numerically.
The solution was obtained by shooting backward (which was the more stable direction) from
the 6 -- oc solution whose asymptotic behavior may be deduced from (5.10)

2 03 1 a
F~ -- +- -- 10 G -- + -(5.12)
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Figure 2: Comparison of the direct numerical solution (solid) and the boundary layer solution
(dashed) for Pc = 1000.

where o and 0 were adjusted numerically to obtain a solution which satisfied the boundary
conditions at • 0. Before calculating higher order terms, we compared the boundary layer
solution against the solution from a direct numerical simulation of the advection-diffusion equa-
tion. Figure 2 shows a plot of the two solutions for Pe = 1000. The agreement suggests that
leading terms do indeed capture the asymptotic behaviour. The inner solution is thus well
described by

r- 2/3 r -2/3
fill F(•), G,, - G(,). (5.13)

The final approximate solution to the coupled ODEs to leading order is the composite of the
inner and outer solutions (recovering all the scalings and letting 3 = c/r 1 /3 ks)

S /S3 k, )=S

J, = fi -i--F -IF Y 51a

yUk) c C sin(k2y)

S 1 /VG ___ (5.14b)
Uk8 k:3 0 (I9 sin(khy) *

Armed with this we can compute the multiscale mixing measures (IV,012) for p 0, 1, -1.

5.1.1 Variance

The variance is (N.B. only conipuling over 1/4 period)

(02) = ((y2) + (g2)) = 1( f2(y)dyf+ g2(y)dy) (5.15)

letting 7/ = y/1 : 0 -72k,,6

(I. 2 1 2,J 262~~

(Q2) 1 2k,, k FI A F2 (")d y -i+ G2( 71)- k o d 7  . (5.16)
S-lU2"2 /k6] d Si ( k.)73)
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Figure 3: Mixing efficiencies for p = 1 denoted by x, p 0 denoted by *, and p -1 denoted

by + for the steady shearing flow with r = 1 from direct numerical simulations with U fixed.

The solid lines are the asymptotic scalings.

Here we are interested in the scaling as 6 --* 0. In that case we are justified in replacing the

upper limit of the integral of F'(r7) by infinity since the outer solution is zero. More care must

be taken with the integral involving G2 (77). We note that k 2 rq5 2 / sin 2 (k.r/6) is bounded by 0

and 7r/2 and hence we can apply Lebesgue's dominated convergence theorem to obtain

(02) u 1 S2 1 (j F2 (r7 )dr7 + j (71)d) (5.17)
7 U2k ku6 o

Recall from section 2 that (02) = S 2 /t 2k4 and hence the mixing efficiency is

Mo Cr 1 / 3Pe 5/ 6 , C = f1 (5.18)
V fOo F2 (,q)d' 7 + fo7 G 2 (n) dv

Figure 3 shows Mo as a function of Pe from direct numerical simulations. The scaling fits

Pe5/ 6 . There is only a 5% difference between the prefactor calculated from the boundary layer

solution and that calculated from the direct numerical simulation for Pe = 1000 (after rescaling

Pe to Pe). Remarkably, the Pe 5 / 6 scaling is also observed for the HIT stirring (figure 1). The

scaling in r was also confirmed. The Pe 5 / 6 scaling would hold for different values of r with a

corresponding change in the value of the prefactor.

5.1.2 Gradient variance

The gradient is

(IV°12 ) = k [y2) + (g2 )] 1 I [((f,) 2)+ ((g) 2)] (5.19)

2 +2 (.9

noting that the first term was computed in the previous section we focus attention on the second

term. Computing the gradient we obtain

1 [((/,) 2 ) + ((gy) 2 )] = S I F'(y/5)) 2 -S

S 1 aG'Y/6siny 
1  SI k1G(yl/6 ) [ 1)) (5.20)v-k, ku,2 snp) Uk, k,6 sin(kuy)] (.20
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The leading order contribution to the integral is the square of the first term (1/12 versus 1/J).
Hence

1 S2  J2ý 6
1 [((f'+,) + 63 

[)J2] (F) 2 ( ?7)(g, + )k (G') 2 ( 7) k' "/ r (5.21)
2 7 U 2k2ksn3 O sOk.r)

and by the same arguments as the previous section (DCT etc.) we obtain

S 2
(IV012) 1 _ (F' )2 (I)d,+ (G')2 (q) d S (5.22)

Recall from section 2 that (IV0o1 2) S 2 /K 2k2 and hence the mixing efficiency is

1/2 C 1
AllCýeCP - (5.23)

C2 c •/o'(F')2( 71)d77 +

The boundary layer and direct numerical solution prefactors differ by approximately 1% for
PC = 1000. Figure 3 shows the scaling of -M1 from the direct numerical solution that confirms
the Pe1/ 2 scaling. The scaling in r was also confirmed. Interestingly, stirring at small scales
does not enhance the mixing efficiency on small scales. This is because the decrease in gradient
variance due to stirring on small scales is compensated by the increase in gradient variance in
the boundary layer.

5.1.3 Inverse gradient variance

The inverse gradient variance is

(IV- 10I2) = (IV- (f(y) sin(kx) + g(y) cos(ksx))1 2) (5.24)

This is the trickiest of the three multiscale mixing measures. We can simplify the integral by
noting that the leading Fourier component of g(y) is zero. Expanding f(y) in a Fourier series

00

.f(y) = Z j', 05os(k,,,y) (5.25)
1=0

we obtain
oc k ,s

V- (f(y) sin(k(kx)) L 2 + ± 1
2

0 f- sin(nk,,y) sin(ksx)i +
?= S

77kunk 2 + 12k2 f, sin(nkuy) cos(ksx)j (5.26)

and

( IV -( f ( y ) s in ( k ,•x ) ) 12 ) = f n I 1 1-2 1 0, _ f._1,

"n= + n

fO12 + I I12 < • IfO1 + FSup Ifn12. (5.27)
k2S 16 n
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Figure 4: Mi/Pe5/6 versus Pe1/ 6 from direct numerical simulations (*). The solid line is the
asymptotic scaling.

Computing the first Fourier coefficient

Vfol = 1 j 1/4f (y)dy = j F(,q)d (5.28)7Fo = ý0 uk,

and recalling from section 2 that (IV- 100 12) = S 2/K 2k6 we obtain the large scale mixing efficiency
scaling

M-1 O CPe (5.29)

where C is a prefactor depending on the integral of F (square of the mean versus the mean of
the square). Figure 3 of the direct numerical solution confirms the Pe scaling. The boundary
layer and direct numerical solution prefactors differ by 15%.

We note two interesting things; first to leading order there is no dependence on r even though
we might have expected that increased shear would increase mixing on large scales (see section
3). Second we expect that the next order term would be proportional to M0 i.e. that

M-1 F Pe + r P3pe5 /6. (5.30)

Figure 4 shows a plot of Mi/Pe 5/ 6 versus Pe 1/ 6 from direct numerical simulations. A very
non-rigorous check of the scaling involves comparing the slope of the line in figure 4 to the
prefactor above. The slopes differ by 20%. Note in that plot the current limit of large P6clet
and fixed r requires r < o.1v/P--e i.e. r < 3 (6 < 1).

There are still some things we do not understand. Are there universal scalings in Pe? Namely
for the steady flow and the Zeldovich sine flow we get the same scalings. Do these scalings appear
for other flows with this source?

5.2 Regular perturbation expansion

We now seek the behaviour of the multiscale mixing efficiencies for r > 1, Pe fixed. Going back
to our system of ODEs and setting ý = ky we obtain

Pe sin([)f _- 1 _d_2] (5.31a)
r2 r2 1 d 2  1__

P-e [- I + d2 f+ --/S 1 (5.31b)13 5r y
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Now we perform a regular perturbation expansion in powers of r- 2:

W0 00

f ~-92,• g - 2n (5.32)

n=0 n=0

At 0(1) we obtain

fo"= 0 fo = const, g" = 0 -- g0 = const (5.33)

continuing as usual we obtain at 0(r- 2)

Pesin(ý)fo = -go + gl, -- esin(0go = -fo + f"' + •k-- (5.34)

The average over a period of the first and second equations implies 9o = 0 and fo v2S/rk2

Thus, fi = const, and 91 = -(v-2xS/K,2k)Pesin(ý) + const. Continuing, we obtain at O(r-4):

PC sin(ý)fl = -gl + g"', - Pe sin(y)g1  -fl + f2. (5.35)

The average over a period of the first and second equations imply

f]. /2 S P c 91 V Psin(9)" (5.36)27: ,K/*#2, K -

Hence to leading order the solution is

'./_S PC ' 2  Pe (-7
0 7r2) sin(ksx) - -2 sin() cos X)(5.37)

Given the asymptotic solution for r >> 1 at fixed Pe we compute the variance as (keeping only
the leading order term and the 0(r-2 ) term)

(02) s 2  1 1 p.) (5.38)

which implies

1 PPe 2
M0 •l+ 7r r2 .(.9

It is clear from this result that stirring on ever small scales (increased shear) ceases to suppress

the variance. This is because in the limit r >> 1 the flow is diffusion dominated hence the mixing

efficiency goes to one.
The gradient to leading order is

VO -1 e I 2 k, cos(klx) + PC sin(')k)sin(ksx) i +

PC cos(y) cos(kx) j (5.40)

and so the gradient variance is

(IV01 2 ) p (1 ) (5.41)
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which implies the mixing efficiency is identical on small and intermediate scales M1  M0 .
The inverse gradient to leading order is

V-O 10 -7 2k sin(ksx) + - sin(ý) - cos(ksx) i +

cos(ý) k cos(kx) (5.42)

and hence the inverse gradient variance is

(IV-1012) ; S 1 e r2) (5.43)

and hence M- 1 = M0 (as suspected). Thus in the limit r > 1 and Pe fixed all of the efficiencies
are the same.

Summarizing the different limits, we find that the norms scale differently in Pe for fixed r
and the scalings were confirmed with the direct numerical solution. However, the norms behave
similarly for fixed Pe and r > 1 where the flow is diffusion dominated.

6 Bounds on the multiscale mixing efficiencies with scalar decay

Now consider the advection-diffusion equation for the concentration of a passive scalar 0(x, t)
which has a slow decay rate a maintained by a body source s(x) with spatial mean zero:

0-9 + u. VO = ,AO + s(x) - ao (6.1)
at

where K is the molecular diffusivity. The decay rate may have various interpretations such
as the decay rate due to chemical kinetics, or radiative relaxation in meteorology (relevant
for the sphere). We follow the procedure of TDG which was used to derive upper bounds on
mixing efficiency for a = 0 to derive upper bounds on (IVPO12) for p = 0, 1, -1 when a = 0.
We re-define the advection-diffusion operator and its formal adjoint to include the slow decay:
L, := 4Ot + u. V - rA - a and Lt. := -at - u • V + rA - a. Now we proceed with computing
bounds on the multiscale mixing efficiencies.

6.1 Bounds on the variance

Following the TDG procedure, we perform the following optimization:

(02) -> maxmin{(0 2 ) 1 (9(u • V#o + iAo - aýo)) = -(ps)} (6.2)
(P 8

upon applying the Cauchy-Schwarz inequality and maximizing over 9 we obtain

(02) >_ (sM's) (6.3)

where M' := (L•L')-'. Substituting the definition of L, and restricting to HIT

(s~.Ms) =(s{K2 A 2 
-_-u: VV + p(2VI • VV + VU. V) - ai . V - 2aKA + a 2}-ls)

= (s{r 2A 2 
- (U 2 /d)A - 2raA + a 2}1-s). (6.4)
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The variance in the absence of stirring is

(0) =(s{•,2 X2
- 2KaA + a2 }-1s) (6.5)

and hence an upper bound on the mixing efficiency is

(A1) 2 < (s{K,2 A 2 - 2KceA + G2 }-'s) (6.6)
- (S{ A2A 2 - (U 2 /d)A - 2,rcA + a 2 )•}-1S(

In Fourier space this is

A/10a) 2 < ~ k E 2,ak) ± 2(k)I 2 - (6.7)
( ) - ( 2]0 + 2Ka2 + G,2 " K2 k 4 + (U 2 /d + KQ)k 2 + a2

Clearly, the upper bound depends on the Fourier transform of the source function s. In the next
section we investigate the high-Pe behaviour of MA for a measure valued source. To determine
the high-Pe behaviour we approximate the sums by integrals and take the limit of infinite volume
noting that the a term allows the integrals to converge:

(.c)2 < - V(k)j 2 kdlddk ,2 j (k) 1 2 (k6d.d dk )
k0 + 2Kak 2 + 12) (J() K 20 + (U 2 + 2 +a)k2 + a 2  (6.8)

Letting ý-- kv/ ' in d-D we obtain:

( )(( foa)2 < 1 ( )1 d- d I'• / -1 d -d(6 9

SJO 4 + 2ý2 + 1 ,4 + (2e 2  + 2)(21

where 75c := Uf/a = U/V/•-n where f = f/-a is the diffusive length scale i.e. the distance

travelled by diffusion before decay.

6.1.1 Delta function source

Consider a delta function point source so that there is a separation of scales between the source
and the stirring field. In d = 2 we obtain

J C dd 1 1n

1 4 + 2ý2 + 1 21 1 4 + (io-Pec2 + 2)ý2 + 1 - f2 (6.10)

where ýj and ý2 are the solutions of the quartic equation:

(/ 2 + 2) ::F+ 2  1 +47C 2  (75e 2 + 2) F 5P2 (1 + 2p 2 - 27 4 ... )
1,2 =2 2

In the large Pc limit the mixing efficiency is

A'1- <• P "(6.11)
2 In 75
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Note this is a distinct scaling as regards K compared to the problem with a = 0. An efficiency
scaling of - 75e implies the eddy diffusivity would scale as vK. For d = 3 we have

J/d _4 ' •• V(6.12)ý4 + 2ý2 + 1 4' fo 4 + (75e2 + 2)ý2 + 1 2 • -•

In this limit the mixing efficiency is

Mo < 1 VP/e. (6.13)

Thus for d = 3 we also have an anomalous scaling in 75e with an equivalent diffusivity propor-
tional to K1/4

6.2 Bounds on the gradient variance

For the gradient variance the optimization problem is

(IV012) > max min{(IV012) I (V0. (up + nVo - a(V(A- I)))2) 1 -(ps)} (6.14)

upon applying the Cauchy-Schwarz inequality (we will revisit this approach at the end of this
section) we obtain

(IV012 ) > max < sO)2 (6.15)

ý0 ( Vo+ ýOU - a (V (A - v))I12) (.5

Under the assumptions of HIT

(JtKVp + uý - a(V(A'-p))I 2) = (K21V(VI 2 + [I12ý02 + a 2IV(z- 1 0)I2 - 2raV(A-ý) . V06.16)

The solution to the optimization problem is (after some algebra)

(IVOI 2 ) _> (sM's) (6.17)whee M :=(-n2A u2 + n 2A_1)_1.
where Md : (-K 2A -- + 2t•a +4 a 1  . Given the gradient variance in the absence of
stirring we obtain a bound on the small scale mixing effciency

(M1o) 2 < (s{,- 2 A + 2Ka + a 2A- 1})-s) (6.18)
(s{--•2 A -- d-2 + 2tca + a 2 A- 1 }- 1s) (

In Fourier space the bound is expressed as

KMk ) k2 ( <1 ( )1 2 ) yI ( k ) 2 1 )( M2) -< P k2(K 1) + U 2 (6 .19)

Once again since we are interested in the high-15e behaviour we approximate the sums by
integrals

(0) + 2 2k2 + a 2 ] ) }20 + (L2 + 2Ka)k 2 + a 2  (6.20)
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Letting . = kV/ in d-D we obtain:

IfO I / v 12)- wW 2 d-lj -1<
(MAl)2 < ~ I( f ________

(4 + 2ý2 +1I 1 kjo 4 )+ +2)2 + 1 (6.21)

Clearly the convergence of these integrals depends on the property of the source. We must have
for a # 0, s G H-'.

Here we re-examine the application of the Cauchy-Schwarz inequality. The analysis can be
improved by evaluating

niun{(lVO1 2) I (VO. (uy( + K Vyý - a (V(A-I)))) = (ps)} (6.22)
6

with functional . := ( IVOl2 + A(v.V O- s)) where v u•+•V#-a(V(- 1p)). As in section
3 the solution to the optimization problem depends on the two-point correlation statistics of the
velocity field

(IV1s))2 >(•s0)2 (6.23)
((V. v)(-A-')V, v) - (Iv12)-(62

In the case of HIT a strict application of the Cauchy-Schwarz inequality yields the optimal
bound. Again this analysis does not, apply to either the variance or inverse gradient variance.

6.2.1 Delta function source

As for the case of o, = 0, a 3-function or white noise source will cause the integrals in (6.21) to
diverge and thus .11'= 1 for 6-function sources.

6.3 Bounds on the inverse gradient variance

For the inverse gradient variance the variational problem is
(IV-1012) > mamn{(IVi 012 I (VA-1" V(u . V + ÷ A + -A y)l 2) - (0s)} (6.24)

S0

upon applying the Cauchy-Schwarz inequality

(ý1V'012) > max (V V (6.25)

Under the HIT assumptions

(IV(U . Vcp + tKA( - (Yý0)1 2) =(KIAVý0I2 + r,2IVý02 + u(P2 + 2 V1-2ay. p)

The solution to the optimization problem is (after some algebra)

ýIV-1OI2) > ýSA•_•s) (6.26)

where M l, (ts2A3 - (F 2/d)A + (U2/d)A 2 + 2Ko'A 2 
- a 2 )- 1 . Given the inverse gradient

variance in the absence of stirring we obtain a bound on the large scale mixing effciency

(Al?) 2 < (s{j 2A + 2 - }s) (6.27)
-Sf t; 2 A3 - -2-A + I÷ 2 + 2t;o'A 2 - a 2 A} 1s)(.7d d
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In Fourier space the bound is expressed as

(M4! 1)2 < 2k E 19(k) 12 1ak)122

-2 ( •2k6 + 2ak4 + a2k2 r 2k6 + (_L + 2ra)k4 + (a2 + '2)k2 (6.28)
\k k d~ kI 2k) (.8

Once again since we are interested in the high 75e behaviour we approximate the sums by
integrals

2< ( 0 19(k) 12 •kdlddk 00 k 2 19(k) 1
2 kdlddk )-1

( ) k 2 (t; 2k 4 + 2rak2 + a 2  k 2 (rc2 k4 + (LL + 2ca)k2 + a 2 + ,2 )

Letting =V/- in d=D we obtain:

(M -1)
2  < i 

(2 d d

( ý2(ý4 + 22 + 1) o 62(4 + (e2 + 2)2 + 1 + 2) (6.30)

In d=2 there may be an infra-red divergence problem. The integrals converge if I1§(k)1 2 = f(k)
if f(k) ,t kV where 0 > 0 (we require mean zero sources as to prevent blow up at 0). This is our
only restriction on the source. How the Fourier transform decays as k --+ 0 indicates the large
scale structure of the source. Exploration of the bound's behavior remains a task for the future.

6.3.1 Delta function sources

In d=3
00 d6_ 7r 100_ d6 __ -_/_ (6.31)

J 64 +262+1 4 ]o ,4+(75e2 + 2 )62+1+ L 2(62-61) V/162

where 61 and 62 are roots of the quadratic equation:

61,2 = (75e2 + 2) ± •/5 4 + 475e 2 _4,22  (6.32)

In the limit of 75e > 1 we get to leading order in 15e:

725-e2 r2 15pe - 2 1 4F (6.33)
61 75e F14 1 U42 2 P~ e~ 2Pe 1-4

hence

[ C C6 r - 7 r V 2 7 e ( 6 .3 4 )

re2 2 75e -

where Pe,\ = UA/K where A (a P6clet number using a length scale of the velocity field). Hence

(Ml) 2 < Pe 2  (6.35)PeA

note that the efficiency may be larger when there is stronger shear F >> 1 as was found in the
case of a = 0. Table 2 summarizes the high-Pe scaling for HIT in the case of a = 0 and a € 0
for a 3-function source.
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a = 0 d=2 d=3 aO0 d=2 d=3
A/ 1 1 1 1

ogl ~ PCeI- Pe R/Pe

1 1  PeL P 1Ie
)\ iog(1+L 2/A2) 6\ I * =e

Table 2. High-Pe scalings of the multiscale mixing efficiencies for a 3-function source. The
* indicates that the scaling depends on ]s(k)j as k - 0 and P5e := U/r == U/1V a where
f½ = K.a.

7 Conclusions and future work

Multiscale mixing efficiencies are susceptible to rigorous analysis. Upper (lower) bounds on mul-
tiscale mixing efficiencies were obtained from lower (upper) bounds on appropriately weighted
variances. Bounds on large-scale mixing are sensitive to small-scale stirring. The bounds can be
sharp (sweeping flows on the torus). Furthermore, the efficiency of some complex random flows
can be understood via simple steady state scalings. Finally, the inclusion of a decay term in the
advection-diffusion equation introduces new features namely new high-Pc dependences of the
equivalent diffusivity on the molecular diffusivity.

The current analysis has only answered some of the questions posed in the introduction
hence, there are exciting problems that are the subject of current and future investigation. Forf
example, extending the current analysis to bounded domains (sphere etc.) and formulating an
appropriately constrained variational problem for the optimal (source specific) stirring field.
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Transport in cellular flows from the viewpoint of stochastic
differential equations

W. Pauls

July 18, 2006

1 Introduction

The behaviour of passive scalar tracers moving in a prescribed velocity field can be described
using two equivalent formulations: (i) the passive scalar equation which in two dimensions
can be written as

OtO + V-'H VO =rs , (1)

(ii) probabilistic description in terms of stochastic differential equations

dX = -OyH(Xt, Yt) + ±/• dWt W (2a)

dYt = cH (Xt, Y) + -V2- dH'. (2b)

Here H(x, y) is a periodic stream function defined in such a way that the velocity field is
given by u = (-&yH, OxH). In what follows the velocity field will always be deterministic
and time-independent.

The subject of study in this report is the asymptotic behaviour of the process (2) in
the limit E - 0. In fact, this question can be analyzed using the passive scalar equation
(1). Here the homogenization technique from the theory of partial differential equations is
app)lied which gives a description of the behaviour of solutions of (1) on large scales, see
[1]. Separating slow and fast variables and performing a multiscale analysis one obtains the
effective diffusion equation for the evolution of 0 on large scales

00 = V . D-VO. (3)

The effective diffusivity D* is a constant matrix given by the following expression

D*(e) = ((E + P)(VX + e) -e), (4)

where X is the solution of the so called cell problem

V -[(EE + IF)(VX + e)] -- 0. (5)

Note that equation (5) haIs to be solved in the domain of periodicty of the streamfunction
H(x, y). One class of flows for which the cell problem (5) is amenable to analysis is a special
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case of the well known ABC flow, namely the case A = 1, C = 0. The streamfunction is of
the form I+B 1-B

H(x,y) = cosxcosy+ 12 sinxsiny. (6)
22

The case B = 1 has been treated in [2] using boundary layer techniques where it was
shown that D* = O(Q,). More precisely, the boundary layer analysis is performed in a
boundary layer of width 0(ý/F) which forms at the boundaries of the impermeable cells
of the underlying velocity field V'H(x, y). Heuristically, since the amount of the tracer
transported along the boundary layer is proportional to its area, the effective diffusivity
has to be proportional to vE. An analytical solution of the cell problem in the boundary
layer approximation was given in [3] using Wiener-Hopf technique. In the case B < 1 the
effective diffusivity is anisotropic and as has been shown in [4] the effective diffusivity across
the streamlines is of order O(E) while along the stream lines of the flow it is of order 0(1/E).

The large-scale picture obtained by the homogenization approach as presented above
does not give any information on the microscale structure of the diffusion processes hap-
pening in the flow. However, small scales do play a major role in the form of boundary
layers which is typical for diffusion processes at high P~clet numbers.

In principle, stochastic differential equations (2) allow us to describe the diffusion of
particles in much more detail. But how much information can we obtain on the limit E --* 0?
A standard approximating technique in this framework is the so called Wentzell-Freidlin
method. It describes the behaviour of randomly perturbed Hamiltonian systems on large
time scales at high P~clet numbers by means of continuous diffusion processes on graphs, as
is explained in Section 2. A priori, this technique works only only for Hamiltonians H(x, y)
such that H(x, y) --+ +oo when I(x, y)I -- oo and does not allow for existence of heteroclinic
orbits.

If we try to apply this technique to the case of unbounded cellular flow with H(x, y) given
by (6) we arrive at a paradox. Namely, the transition from one cell to another will happen
instantaneously no matter how large the spatial separation between the cells. Furthermore,
the characteristic time scale of diffusion will be of order 0(1/E) which contradicts the results
obtained in the homogenization framework where the characteristic time scale is of order

However, for bounded domains this technique works for sufficiently small E such that
1/1/E is much larger that the domain size (therefore it is not in contradiction to the homog-
enization method). This gives us an indication that the Wentzell-Freidlin method remains
locally valid. In fact, it fails on unbounded domains because of its global structure which
is determined by the method of "gluing" together single cells.

Actually, by changing the "gluing" prescription between the processes obtained in single
cells we can make the Wentzell-Preidlin approach to be consistent with the results given
by the homogenization. The main ingredient here is the conservation of probability: the
probability current going out of a cell has to be matched with the probability current across
the cell boundary (dominated by the boundary layer effects) into the neighbouring cells.

The structure of the present report is as follows: Section 2 is entirely devoted to the
Wentzell-Freidlin technique. In Section 2.1 we explain the averaging principle for a single
cell and its deterministic background. Asymptotics 6 -- 0 of solutions to (2) on bounded
domains is described in Section 2.2. In Section 2.3 we discuss some simple models for
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diffusion in unbounded cellular flows. Furthermore, using results of numerical simulations
we argue that the approximating process on unbounded domain will be discontinuous. In
Section 3 we outline the procedure for obtaining this process and state the result. Possible
applications are discussed in Section 4.

2 Random perturbation of Hamiltonian systems

For small values of E (i.e. for high PNclet numnbers) equations (2) describe small random
perturbation of the determinstic system

J- = -,9yH (x ( t), y (t) ), (7a)

"[1 = Ox H(.,r(t), y (t)) (7b)

which represents the limiting case E = 0. Heuristically one would expect that the behaviour
of solutions to (2) in the limit E -- 0 is to a large extent determined by the deterministic
solutions, i.e. solutions of (7). The simplest ansatz of this type consists in making a per-
turbative expansion of solutions to (2) in powers of vE/ around the deterministic solutions1 ,
see [11, 12]. However, this approximation is of little use when we want to study long-time
behaviour. Indeed, it works well only for a finite period of time (which also remains true
when we include higher-order terms) and does not take into account the separation into
fast and slow variables. The latter point is of special interest to us because the underlying
structure of the deierministic case (to be described in Section 2.1.1) is at the basis of the
approximating method discussed in Section 2.1.

2.1 Slow-scale motion inside a cell

2.1.1 Case of vanishing viscosity

In terms of (1) the deterministic case corresponds to the passive scalar equation with van-
ishing viscosity E = 0

00± + V-H • V0 = 0 (8)

and an initial condition 00. The eharateristics of this equation are given by (7) so that
the solutions of the Cauchy problem for equation (8) can be constructed in terms of the
one-paramnetric flow (by taking the inverse Lagrangian mapping) generated by the velocity
field V-LH(x,y), see e.g. [5].

If we choose the streamfilction (6), then equations (7) can be solved explicitly, see [6].
For the particular case B = 1 the solution is given in terms of Jacobi elliptic functions (see
[7])

x(t, h.) =arcsin (V1 - ho sn(t, 1~ - 02)) (9a)

y(t, h) = arcsin (Vf1 - h2 cd(t, l/- h2)) , (9b)

'In the case of the Hlamiltonian (6) with B = I the explicit solution of (7) given by (9) allows us to
conipiute analytically the first order terni in the expansion. It turns out to be a stochastic integral the
integrand being a complicated expression involving Jacobi elliptic, hyperbolic and logarithmic functions.
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where x(O) = 0 and H(x, y) = h is kept fixed along a trajectory. Obviously, a particle
initially located in one particlular cell will stay inside this cell. The period of motion along
a level line with H(x, y) = h is given by a complete elliptic integral 4K(v/1 - h2 ). For the
special case h = 0 the equation of motion along the separatrix can be solved in terms of
elementary functions

x(t, 0) = 2 arctan e - (10)
2(

where the initial conditions are specified as x(0, 0) = 0 and y(O, 0) = 7r/2. Note that in the
deterministic case it takes an infinite time to reach the equilibrium point (w/2, r/2).

It is crucial for the following analysis that we can interpret (7) as a Hamiltonian system
with one degree of freedom by identifying (x, y) -- (p, q). The streamfunction H(x, y) -*

H(p, q) is then identified with the Hamiltonian of the system. As usually, an action variable
I(h) can be introduced as

I~)= f K (V1-h)dh', (I1

which is equal to the area inclosed inside the orbit H(p, q) = h divided by 27r, see [8].

2.1.2 Effective Fokker-Planck equation

We will first study the behaviour of solutions to (2) with H given by (6) with B = 1
such that the particle is staying inside one cell. The typical technique for analyzing the
evolution of slow variables of such a system subject to small random perturbations is the
technique of averaging out the fast variables. Then an effective evolution equation for slow
variables inside a cell is obtained in a way similar to the analysis of small perturbations
in classical mechanics [8]. In the framework of stochastic differential equations this ansatz
was introduced by Wentzell and Freidlin, see [12] and references therein. For analogous
consideration in the framework of passive scalar equation see [17].

In our case the averaging principle can be briefly summarized as follows: Inside the cell
the deterministic system (7) can be described in terms of motion on invariant tori. We
parametrize these tori by the values of H(x,y) = h. In the perturbed system (at least
for small perturbations) particles will still rotate rapidly along the tori, however they will
slowly drift across the tori. To describe this slow drift we calculate dH(Xt, Yt). Using It6's
formula we obtain

dH (Xt, Yt) = V/2 V H(Xt, Yt) " dWt + E AH (Xt, Yt)dt, (12)

where dWt = (dW(x), dW~{)) is the two-dimensional Brownian motion. Of course, we
cannot evaluate the terms VH(Xt, Yt) dWt and AH(Xt, Yt) explicitly without solving
equations (2). However, using the integral form of (12)

H(Xt, Y) = H(Xo, Yo) + V jE VH(XS, Ye)- dW8 + E j AH(XS, Y8)ds, (13)
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we see that because of the smallness of the perturbation (i) the second integral is approxi-
mately equal2 to the integral fo(AH)H=h(Xs, Y8)ds, where

(AH)H=h = H ]dl (14)

and the integrals are taken over the level set {(x, y) H(x, y) = h}. Moreover, (ii) the first
(stochastic) integral in (13) can be represented as

jVH(X,, Y) .dW, = W IVH(X ,ys)12d) , (15)

where W(.) is a one-dimensional WAiener process. With the same argument as before
fo IVH(X ,Y8 )12ds can be approximated by the ergodic average of IVHI 2

(f dl _1
(IVHI2)H_-= v )I IVHIdl (16)

The obtained effective diffusion process is most conveniently formulated in terms of an
effective Fokker-Planck equation with time resealed as t , Et

-p = a2It (A(h)p) - ah (B(h)p) (17)

The coefficients A(h) and B(h) given by

A(h) = (IVH12 )H=h, B(h) = (AH)H=h. (18)

In the case of H given by (6) with B = I these coefficients can be calculated explicitly using
formulas (9)

A(h) = 2 E(V-1 - h2) _ 2h 2 , B(h) = -2h. (19)

K(v- 1h 2 )

Here K(.) and E(.) are complete elliptic integrals of the first and second kind, see [7, 15].
Note that instead of the Hamiltonian we could have used the action variable (11). Indeed,
the formulation in terms of the action turns out to be very convenient for generalization of
the averaging principle to higher dimensions.

2.2 Construction of an approximating Feller process (Wentzell-Freidlin
technique)

In this subsection we study asymptotic behaviour of solutions of (2) constrained to a
bounded domain (with periodic boundary conditions) approximating them by a process
with essentially one-dimensional state space. We have seen that (17) specifies completely
the behaviour of the system up to the first exit time out of a cell. Once having left the
cell after some transitional time (during which it will stay in some neighbourhood of the
boundary of the original cell) the particle will again slowly diffuse, either in the original cell
or in another neighbouring cell.

2This is due to the averaging principle.
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Figure 1: Reeb graphs of the flow (6) for the cases B 1, 0 < B < 1 and B = 0 on the
domain of width 27r x 2w.

To describe the transition phase of the particle from one cell to another we need to (i)
give a geometrical description of the way in which the cells are connected to each other, (ii)
analyze in detail the behaviour of the diffusion process during this transition.

The geometrical description is given using the topological notion of a Reeb graph of
H(x, y) [9]. For a general Hamiltonian H(x,y) it is defined in the following way: Let
(Xc, YC) be a critical point, i.e. a point such that VH(xc, y,) = 0. Then each connected
component of the level set H- (H(x,)) is identified with a vertex. The points on the edges
which connect the vertices are identified with connected components of the noncritical level
sets H-'(H(x, y)). Figure 1 shows the Reeb graphs of H(x, y) given by (6) on the domain
[0,27r] x [0,2wr] for the cases B = 0, 0 < B < 1, B = 1. Note that in the case B = 1 the
edges of the Reeb graph correspond to the interior of the cells.

The geometrical description above suggests that the appropriate state space of the pro-
cess approximating the solutions of (2) is the Reeb graph I of the Hamiltonian H(x, y) with
edges denoted by ei and vertices denoted by Ok. In side each edge ej the approximating
process is governed by the evolution equation of the type (17)

otPi = 9h (Ai(h)pi) - oh (Bi(h)pi) (20)

To determine the process completely we have to specify the boundary conditions at the
ends of each edge, "gluing" the edges together in a consistent way. This "gluing" procedure
determines the behaviour of the process during the passage through the vertices of the
graph. Physically it describes transitions of a particle from one cell to another.

Specifying boundary conditions for a stochastic process is in general a quite delicate
point. One possibility to specify the boundary conditions is to require the approximating
process to have "nice" mathematical properties. 3 In [13] all possible continuous Markov
processes with Feller property4 on graphs were described such that the diffusion inside an
edge is governed by a second order elliptic operator (which can possibly depend on the
edge). In our case the ellpitic operator is given by the right hand side of (20). Furthermore,
at, each edge the sum of the incoming probability currents has to vanish. This leads to the

3As we shall see later, this requirement is not always consistent with the behaviour of solutions of (2).
4This means that in course of time continuous distributions of probability remain continuous.
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following boundary conditions at a vertex Ok

Z J(ok) 0 , P (ok) = p,(ok), i,j : "- Ok, ej - ok (21)
i: ei-Ok

where ei, ej - Ok denote the edges incident to the vertex Ok.
Thus, the approximating technique (in the following referred to as Wentzell-Freidlin

technique) consists in (i) approximating the solutions of (2) inside of the cell by (17),
(ii) gluing together the cells by matching continuously the probability distributions at the
boundaries of the cells.

In the case of the Hamiltonian specified by (6) on bounded domain we expect that the
process on the graph approximates well solutions of (2). Furthermore, similarly to [12] a
particle spends a zero time (on the time scale Et) at the vertex. From this follows that once
the particle reaches the cell (edge) boundary, it can hop instantaneously to any other cell.
Furthermore, the behaviour of the process after it reaches the vertex does not depend on
its prehistory, i.e. on the edge it came from. Thus, the transition probability from one edge
to another is not dependent on their spatial separation. Note that for E + 0 this does not
result in any contradiction, because of the very long relevant time O(1/E) -, 00.

Altogether the Wentzell-Freidlin technique yields the following picture for advection of
passive scalar in a bounded domain: Let us chose an initial coondition which corresponds
to the passive scalar being concentrated in the center of a (:ell at t = 0. Then, as time goes
on, the passive scalar will slowly (i.e. on time scale O(1/E)) diffuse untill it reaches the
cell boundary. As soon as it reaches the boundary it will very quickly (instantaneously on
time scale O(1/)) spread across the domain along the network of separatrices. After this
the passive scalar will penetrate the cells on slow time scale O(1/r) untill the stationary
distribution is established.

However, the above implies immediately that the Wentzell-freidlin technique cannot be
applied in the unbounded case. Indeed, it would state that a transition frOm one edge to
another happens instantaneously, no matter how large the spatial distance. It can also be
readily seen from the structure of the Reeb graph corresponding to the unbounded case.
Indeed, in this case the Peel) graph consists of one vertex with infinitely many incoming
vertices.

2.3 Diffusion in cellular flows: unbounded case

As we have seen previously, the knowledge of the behaviour of solutions to (2) in the vicinity
of the cell boundaries is of crucial importance. To describe this behaviour one has to take
into account, events such as a particle crossing of a separatrice and going to another cell.
Qualitatively, we can discribe them as follows: We artificially separate the cells by channels
(which play the role of the boundary layers along the separatrices) to take into account the
transport along the boundaries. Let 6(E) be the width of the channel. The motion of a
particle consists of two types of events: (i) slow motion across streamlines inside the cells
with typical time spent inside a cell t,,, = O(1/1) and mean square displacement O(EO);
(ii) fast transport in the channels with velocity of order O(E°) and time spent inside the
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channel O(3 2/e). The effective diffusion is given by

neff 0 ((X 2 )channel) 0 (2) (22)tcell

Setting 3(E) = 64 we obtain neff 0(= O F/). However, the width of the channel is something
that we have to insert by hand into this model. Furthermore, for solution of the cell
problem the width of the boundary layer is usually assumed to be VF/. Nevertheless, this
simple model is usefull because it gives an additional intuition about the nature of diffusion
in the cellular flow. Indeed, numerical simulations of (2) show long flights along the cell
boundaries interupted by trapping of the particle inside the cells, see Fig. 2.

40

30-

20-

10

0-

-10-

-20-

-30 1I I I

-10 0 10 20 30 40 50 60 70

X

Figure 2: Random motion of a Brownian particle the cellular flow B = 1.

During the excursions the stochastique motion can be described by a very simple one-
dimensional model

dOt = Icoset I + VOdWt, (23)

where 0 E [0, 47r]. The backward Kolmogorov equation is given by

&tP + I cos Ol1op = Ea2p. (24)
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Solutions 5 are most easily found by writing the drift, I cos E) as the derivative of the following
continuous potential

- 4k - sin+ for x E [ 2k7, ! + 2kw];V(0) = -4 -s n fo E _2k ) r • ( k l r] (25)

-2(2k+l1)+sinO for xC[E + (2k+1)7j+(2k+1)7],

such that Icos 0 = -OoV(O). Note that this potential contains two parts: a periodic
part Vo(O) with period 7T and a tilting force F = Obviously, the function VO(.)
V(O) + OF satisfies Vo(O + 7) = Vo(O). Stationary distributions are easily found which
allows to determine the mean velocity and the effective diffusion

< V >= lim E[et] D = lia Eo (26)
tfcC t t-cC 2t

It turns out that the mean velocity does not vanish and the effective diffusion is proportional
to 1/1, see [22]. The behaviour of the diffusion process in the neighbourhood of the cell
boundaries has been studied in [14] using boundary layer asymptotics. It turns out that
the time a particle spends in a cell is of order O(E).

Note that events (i) and (ii) have two different time scales: (i) is on time scale O(1/VE/)
while (ii) is on time scale 0(1/E). A similar situation has been discussed in [18] for effective
diffusion along a pipe with semiinfinite pipes branching off the main pipe. The fast motion
happens inside the main pipe while trapping occurs inside the side branches.

Since the stochastic motion of a particle inside of the unbounded cellular flow is a
mixture of random walk on the lattice of cells (jump process) and slow diffusion inside
the cells (continuous process) we cannot expect the Wentzell-Freidlin technique to hold
on unbounded domains. Indeed, as Fig. 3 shows, in numerical simulations of diffusion of
passive tracer on the cellular flow (6) we find high gradients of the passive scalar accross
the cell boundaries.

3 Approximating process with jumps

In this section we propose a generalization of Wentzell-Freidlin method to the case of un-
bounded domains. The main idea is to give up the mathematical condition of continuity
of the process at the vertices of the Reel) graph which in the previous paragraph has been
shown to inconsistent and allow for processes which can have jumps at vertices. The conti-
nuity condition has to be replaced by another condition which takes into account processes
happening at the separatrices analyzing them more carefully than it has been done in Sec-
tion 2.2.

We begin by outlining the procedure which can be used for obtaining the approximating
process on the domain R2. We label each cell by a two-dimensional integer vector (n1 , n2) E
Z2. The effective evolution equation inside each cell is given by

a 2 (A(h)p(=1 02)) - 09, (B(h,)p(,, 1 2)) (27)

Consider now, analogously to [20] a water-pipe network Q-' {(=x,y) C Q : IH(x,y)[ _<
N •F} around the separatrices. The corresponding water-pipe approximation is

,:AO!, - V'H VOE = 0, (X, Y) E Qý (28)

5Stoc1Mastic eq7101aions with periodic drifit ae inlensi vely stiidied in [21].
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Figure 3: Diffusion in the cellular flow given by (6) with B = 1 for E 0.0009765625 at
t = 32.

however, instead of zero gradient von Neumann boundary conditions at the level set

£(nln 2)(Nv'/) = {(x,y) E Q: IH(x,y)I = NV/, (x,y) lies in the cell (ni,rn2 )} (29)

used in [20], we introduce the following conditions

n-- = (DO)( 1,'n 2), (x,y) E L(n,,n2)(gvE). (30)

The two descriptions, in the interior of the cells and at the cell boundary, have to be glued
together. It is here that the conservation of probability enters. We have to match probablity
current leaving the edge with the probablity current entering the water-pipe network. This

gives the equation

ic (DO)kdl = E [B(h)p(n,,n 2)(h) - 0h (A(h)p(nl,n2))]h=NVE" (31)
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The expression on the right hand side is just the probability current entering the boundary
of the cell.

Now we turn to description of the approximating process. First of all, in order to describe
the transport from one cell to another in the asymptotics E --+ 0 we find it convenient to
consider the network of lines connecting the neighbouring cells which is in fact a network
dual to the water-pipe network. In our case of H(x, y) given by (6) with B = 1 it is just the
two-dimensional lattice Z2. At each vertex of this network we specify a function f(-I,-2)(t).

This function serves as a boundary condition for the effective Fokker-Planck equation (27)
(with the original time) in the cell (nl, n2). For a particle the probability of leaving this
cell through the boundary adjacent to one of the neighbouring cell, e.g. the cell (nl, n2 + 1)
is proportional to f(1,12+1) - f(,,2)" Therefore the discontinuous part of the process is
governed by the Laplace lattice operator on the lattice Z2

A•2 f(n ,M2)(t) = f(n• +1,n2)(t) +f(III-1,n12) (t) +f(Il,n,2+1)(t) +f(Il, ,2-1)(t) - 4f(n, ,M2)() (32)

The evolution equation for f(11 ,f2)(t) is then given by

df(nn2) + JP(n )(h)dh = Z2f(nin 2 ) (33)

In this way we obtain a coupled system of equations which yield the complete description
of the approximating process. 6

4 Discusion

The generalization of the Wentzell-Freidlin technique proposed in the previous paragraph
is easily generalized to the cases of nonperiodic cellular flows. In fact, it suffices to replace
the Laplace operator on Z2 by the Laplace operator on the network (graph) dual to the
network of separatrices of the original flow. Of course, the spectral properties of the graph
Laplacian then depend strongly on the topological structure of the dual network. Therefore
the cellular structure of the flow can nontrivially influence the solutions of (33).

One application of the Wentzell-Freidlin technique is connected to the study of reaction-
diffusion equations. However, as has been stated in [10], in its usual formulation it is not
applicable without any restrictions. The generalized form of this technique proposed in the
report seems to be suitable to a wider range of applications, including nonperiodic cellular
flows.
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611, fact, analogous constructions were discussed in [19, 18].
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Scattering past a cylinder with weak circulation

John Rudge

August 25, 2005

1 Introduction

Wave phenomena arise in a wide variety of geophysical problems. Indeed, in this year's
principal lectures a main focus was the modelling of waves in the ocean. It was in this
context that ray tracing and the geometrical theory of diffraction were introduced.

An important distinguishing feature of waves in the atmosphere and the ocean is that
they propagate through a fluid, and that fluid is often already in motion. Familiar examples
include the propagation of acoustic waves in the atmosphere in the presence of winds, or
gravity waves in the ocean in the presence of currents. Ray tracing has routinely been
used to solve such problems, and there is a large amount of current research devoted to
understanding these wave-mean interactions.

Diffraction is the apparent bending and spreading of waves when they meet an obstruc-
tion. It is a phenomenon not described by ordinary geometric optics. However, an extension
to ray tracing called the geometrical theory of diffraction (GTD) can overcome this prob-
lem. On the whole GTD has been little applied to wave-mean problems, and the focus of
this project is to understand how GTD can be used in the presence of a mean flow.

We consider a new twist on the canonical problem of scattering of a plane wave past a
circular cylinder. Scattering past a cylinder is a classical problem with a long history. A
good introduction to the ideas behind this work can be found in [5] and in particular the
application of GTD to the circular cylinder can be found in [7]. Special functions abound
in scattering problems, and [1] is an invaluable source for looking up their properties.

Our problem considers the addition of a weak circulation around the cylinder, which
could be motivated by the problem of modelling weak currents around an island. We
emphasise here that the circulation is weak as this simplifies matters considerably [3].

The geometry is shown in Figure 1. We let the radius of the circular cylinder be a and
take coordinates centred on the cylinder. We take the plane wave to be incoming from +-o
on the x-axis. The cylinder is taken to be impermeable.

2 The governing equations

Following [2], we set up our governing equations as those of 2-D compressible gas dynamics,
which have as a special case the familiar shallow water equations. The continuity equation
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e -ikx -iwt

Figure 1: The geometry of the problem. An incoming plane wave is incident on a cylinder
with circulation.

is
Dh

and the momentum equation is

Du c2
+ (h2 1 ) = 0. (2)

Dt ±

Here u is the two dimensional velocity vector of the fluid, and h is the density of the
gas, or the height of the free surface in the case of shallow water. For gas dynamics y
is the polytropic exponent and c = coVH'-J is the undisturbed sound speed for a gas
of uniform density H. For shallow water ' = 2, co g the acceleration due to gravity,
and the undisturbed gravity wave speed for a layer of uniform depth H is c = -gH. The
corresponding equation of state is

c2
p _Y° , (3)

where the additive constant has been neglected. The momentum equation can then be
written in momentum flux form as

&1(u) + V. (/huu) + Vp = 0. (4)

at

We will assume that our flow is irrotational. V x u = 0. This implies we can write u in
terms of a velocity potential, u = Vq5. The momentum equation can then be integrated to
give Bernoulli's equation

O07 1 2 c~h.•-
S+ lVO2 + - G(t), (5)

at 2IVIH
where G(t) is an arbitrary function of time alone. Note that Bernoulli's equation determines
h as a function of the velocity potential q.
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3 Small amplitude waves

3.1 Time averaged equations

When studying wave phenomena it is often useful to decompose fields into a time averaged
mean part and a disturbance part, namely q = ¢ + 0', where (q') - 0. Averaging (1), the
averaged continuity equation is

v. U+ U-)= 0, (6)

and averaging (5) the averaged Bernoulli equation is

2 hV-1= constant -1 (idI]2 + I7I' (7)c0-Y -1 2

We perform a standard perturbation analysis of the governing equations in terms of a
small non-dimensional wave amplitude parameter ij. We will assume the 0(1) flow has no
disturbance part, and that the 0(,q) flow has no mean part. For the mean flow we write

=p + 0 + 722 + ... ,(8)

=H +2 + (9)

U =U + 0 +2 +....(10)

where capital letters are used to denote the 0(1) flow. For the disturbance we write

¢' =0 +V¢• •2• + .. ,(11)
2(12

h' = 0 + 77h' + 77 2 hf .. (12)

U/ = 0 + 77u/ + 2u t .. (13)

3.2 Mean flow

The mean flow that we are applying is that of a line vortex:

S= EcaO, (14)
Eca

U = -e, (15)
H7-1 e2 c2 a 2

co constant - -(16)
Y - I 2r 2

Here e is a non-dimensional parameter determining the strength of the vortex. Throughout
this work will neglect terms 0 (f2). Hence (16) becomes simply H = constant. We have
non-dimensionalised on c the constant undisturbed wave speed, and a the radius of the
cylinder. Note that the maximum mean flow occurs on the cylinder where jUI = Ec, so the
non-dimensionalisation is such that E is a ratio of mean flow speed to wave speed (a Froude/
Mach number). The circulation F associated with the line vortex is F = 27rcca. Note that
the chosen mean flow is incompressible, V • U = 0.
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3.3 Linear waves

The O(77) continuity equation is found from (1) to be

0 h ', + UVhHV20 = 0, (17)
at11

where we have used incompressibility of the mean flow, and that H is constant. The O(97)
Bernoulli equation is found from (5) to be

,= H _ _' U. .Vo)" (18)hi =C a t

Combining these equations we find

c~v2< 020/ u ( 0 <
c2 vo2  

- (&V -U.V(U. V ) =0. (19)c Iat 2  - U at

Neglecting 0(c2) terms this becomes

c2 v 2  o - 020 - ( 0, (20)

or in polar coordinates
C 2v2o/ - C92¢ 2 -0. (21)

I t2 .2 oat(21

In the case of no mean flow, c - 0 and this reduces to the familiar wave equation.
We can define the local energy density E by

E c2h + -Hju12  (22)

2H 2

Using equations (17) and (18) the energy equation can be derived:

at + V - (EU I c hu') = -Hu VU 2U) u (23)

3.4 Terms of second order in wave amplitude

On the whole we shall not be concerned with second order terms, but they are important
when calculating the force on the cylinder. The quantity of interest is the time averaged
pressure

Co+ 12~ K l2 -y-2TIF2 C2Hy-1jý ±
02 -2 H - 2 CoH--1 -- 0 - 2 +0(713). (24)

The time averaged Bernoulli equation (7) implies that to second order we have

" 2 coH•-3h1 coH"f2 T2 = constant - U. -2- -2 12 (25)
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Hence we can rewrite the averaged pressure as

p=constant+ 72  1Iu2 -HU.U) +O(77). (26)

Note that without a mean flow (26) gives the 0(,q2) pressure purely in terms of first order
quantities. With a mean flow, W-f (a second order term) must also be specified to calculate
the pressure. To O(E) we have from (18) that

h 2=H2((O¢•)
2 +2¢u v¢) (27)I = T at 1) +2 a U-v .7(7

Hence the time averaged pressure can be written in terms of the velocity potentials as

S= constant + 72 H 2 1Iv U ±2 VT) + 0(cq3). (28)

The second order term we are interested in is T2, and since its term in the above
expression is multiplied by U we may neglect 0(c) terms in its solution. From the time
averaged continuity equation (6) we find neglecting O(E) terms

HV.-=-V.QW2). (29)

Now by time averaging the energy equation (23) we find that V. (T~u;) = 0w. Hence,

the leading order governing equation for ¢-2 is simply Laplace's equation V 2 2 = 0.

4 Eigenfunction solution

We will seek time harmonic solutions to (20) of the form 0'(x, t) = V(x)e-wt, where w is
a chosen constant angular frequency, and the real part is assumed. (20) then reduces to

c2 V 2 V + w2± + 2iwU . V¢ = 0. (30)

Let k,, = w/c, the constant wavenumber at infinity where the mean flow is absent. Then
this can be written as

V20 + k2 ± + 2ik -U. VO 0, (31)C

or in polar coordinates as

v20 + k2o + 2ik a00 0. (32)

00 r2  5z0
which in the case of no mean flow is the familiar Helmholtz equation.

(32) can be solved by separation of variables. Let O(x) = R(r)0(O). Then

r 2 R" + rR' + (k2r 2 - A2 )R = 0, (33)

E)" + 2iek,,aO' + A2) = 0. (34)

161



where A is a constant. These have solutions of the form

Rr H kr) (35)

9(0) =ei(±A-k~a)°. (36)

where H,(1,2) (z) are Hankel functions of the first and second kinds of order v. Since we must
have a single valued function of 0, we have that A = +(m + fkoa), where m E Z. Also,

since H(_ I 2)(z) = e-'/H1'2)(z), the eigenfunctions of (32) are thus just H,' 2) (kor)eima,
where rh = 7n + ek,oa. As we are solving a self adjoint problem these eigenfunctions are
orthogonal and we can express the general solution in terms of these eigenfunctions as

V)7 j 0 (A,,H(I)(kocr) + BmH(?)(koc)r)) eimo (37)
m EZ

for constants Am, B,, to be determined.

4.1 Green's function for a point source

Consider a point source at x0 = (ro, 00) in polar coordinates. The governing equation for
the Green's function G(x, xo) is

VG 2+ka kG _ 6(x - x0). (38)2 +r 2  -90

Using the eigenfunction expansion (37) it. can be shown that

I ( 2) (l: rm, H'(1l) ((1oa )]•c inI!()•? a)r(1/ °i O- )

G(x, o) z H~(~I~, H~ka I krn,)~~(~)H~rem O
H;_.,k a( ) •-'.a\,',ofmax,, ],

(39)

where rInax = max(r, rO), r-nill min(r,'ro). An alternative expression for G(x, xo), easier
to compute numerically, is

G(x. xo) = 4 , krnn)~(~)- ,(~jmn)~( 0 o H~i) (kccriax)eim(oO-O),
H,', )(kca)

(40)
where J,(z) and Y,(z) are Bessel functions of first and second order respectively.

Note that since the problem is self-adjoint, the Green's function satisfies a reciprocity
relation G(x, xo) = G* (x0, x), where * denotes complex conjugation. Since G* (x, xo) satis-
fies

- 2ickoca 8G*
V2G* + k'oG= "23 = 6(x - xO), (41)

then the reciprocity relation can be simply stated as: the field at x due to a point source at
x0 is the same as the field at x0 due to a point source at x with the direction of the vortex
reversed.
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4.2 Eigenfunction solution for an incoming plane wave

We want to find the field due to scattering of an incoming plane wave on the cylinder. The

potential Oi for a plane wave incident from +0o on the x-axis is

= e- cos0i k o (42)

Note that the above expression satisfies (32) neglecting terms of O(c 2). Note also that this
expression has a branch, and so 0 has to be defined so that -7r < 0 < 7. Unless ck..a is an
integer, *j will be discontinuous. bi can be expanded in terms of Bessel functions as

>3 Jc-(kr)e--'if/ 2eimo (43)
mEZ

1 3(H(')(kccr) + 0,) (koor)) e-if7r/2 eim8. (44)

mEZ

To solve the problem of scattering on the cylinder by the incident wave we propose a solution
of the form 0i = i + 0,, where 0, is an outgoing scattered wave of the form

Os AmHf()(koor)eimO. (45)
mEZ

Applying the boundary condition 2± = 0 on r = a yields

tT(2)fL
S1>3 Hl) (kooa) + H,,) (k a)H(1)( _-im'r/2^irmO0 /)H,,(=,,~ (46)

mEZ H (1 )(k c a)

1 f) 0 0  , () 0e•) cm (1a)e-i/ 2 eim° (47)

mEZ H,,) (k c a) "

The expression for ' can be rewritten as

f= i> Jn(kc r)Y f (k ýc a) - Y f,(k ocr)J f (kooa) e -ifn r/2eimo (48)

mE7Z Hf,1 (koa) er'/em

which is easier to compute numerically.
The eigenfunction solutions are useful for plotting for moderate k"c a. However for large

koa a large number of modes m must be taken to provide an accurate approximation. Ray

tracing overcomes this restriction by providing an asymptotic theory for large koc a.

5 Ray Tracing

Ray tracing can be used to provide an asymptotic solution to (21) for a slowly varying
wavetrain embedded in a slowly varying background environment. Let

z(x)e (49)
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where we will suppose the phase 0 is rapidly varying, and the wave amplitude z slowly
varying. The local wavenumber k and local frequency w are defined by

k = VO), LU - 0 (50)

The standard ray tracing equations are then given in terms of the dispersion relation

w = Q(x,k) = ck + U. k, (51)

where k = IkI, as Hamilton's equations

dx &9Q dk _ Q
--=+ (52)

dt - k' dt ax

The ray tracing equations imply that dw/dt = 0, i.e. that absolute frequency is conserved
along a ray, and we will consider w a global constant along all rays. The group velocity c9

is given by
d _ c & + U, (53)

g dt

where k = k/k. Another important consequence of the ray tracing approximation is the
conservation of wave action. Define the intrinsic frequency by c = ck, the frequency of the
wave in a frame moving with the fluid. Then the wave action A = EIC, where E is energy
density defined in (22), satisfies

DA- + V-V. (Ac) = 0. (54)
at

Note also that the energy density satisfies equipartition in the ray tracing approximation,
namely

C - HIu'1  (55)

2H 2

5.1 Consequences of the weak mean flow

For an irrotational mean flow there is a curious result which states that to order E the ray
paths are straight [3, 6]. However, there is still refraction of the wave due to the O(E)
variation in k given by

U k kcka
k= k k- = e (56)

c r

where k,, is the wavenumber vector at infinity for the ray in question, and k"= Ikol
(Figure 2).

The phase progression along the ray is given by

= k -dx = (k, -,Eka.VO) . dx (57)

= constant + (koc - x - ckcaO) (58)

Since k, is in the direction of the ray, this can be written as

E = 0o + k,,, (s - so - 7a(O - O0)) (59)
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Figure 2: A cartoon of refraction of the incident wave. Two incident rays are shown, one
above the cylinder and one below. The arrows along the rays indicate the direction and
magnitude of the wavenumber vector at various points along the ray. The rays themselves
are straight, but there is refraction from the changing wavenumber vector given by (56). Far
away from the cylinder the wavenumber vector aligns with the ray direction. Note that the
wavenumber becomes larger as the ray passes the cylinder for the bottom ray, but smaller
for the top ray.

where s - so is the distance travelled along the ray, and 0 - 00 is the angular change along
the ray.

The wave action is given by
E Hkz 2

A = z- = . (60)
WJ c

(54) implies that V. (Ac.) = 0, which to O(c) implies simply

V. (z 2k,) = 0. (61)

Consider an infinitesimal ray tube R with ends El, E 2 orthogonal to the ray. Note that k"
is parallel to the sides of the ray tube and orthogonal to its ends. Then by applying the
divergence theorem to (61)

0o= V. (z2km) dVJ z2kck .lndSJ- z2km.lndS. (62)
RE2 1E

Since k. • n is a constant this leads to the simple result that z 2dS is constant along a ray
tube.

For a plane wave incident from x = oo it follows that the incident wave field is ¢ -

e-ik•(zEaO), where we have prescribed that the incident wave has unit amplitude.
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ki
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Figure 3: Close up of reflection at the cylinder, where it can be considered locally as a flat
wall. Note that the wavenumber vectors (the small arrows) are not in the same direction
as the rays as they hit the wall.

5.2 Reflected Wave

We now consider reflection of a ray on the c'linder. Locally we can consider the cylinder
as a flat wall (Figure 3). Define new coordinates with x perpendicular to the wall and y
parallel. Let the mean flow along the wall be U = (0, Ec). Let the incident ray hit the
wall at (0, 0) with angle of incidence a, and the reflected ray leave with angle of reflection
/3. Far from the wall the wavenumber vector of each ray is in the same direction as the
ray. Moreover, since w/c is constant everywhere, both incident and reflected wavenumber
vectors must have same magnitude far from the wall. Hence we may write

k' = k,, (- cos o,, sin a) , (63)

k' =ko (cos/3, sin/3), (64)

for the incident and reflected wavenumbers at infinity respectively. From (56) we see that
the incident and reflected wavenumbers at the wall are given by

k' = k/,, (- cos a, sin a - e), (65)

k' = k/ (cos 0, sin/3 - E) . (66)

Hence locally we have that
•ik x~i • r r~e

-= + = + z 0ikx0.+eo. (67)
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Using the boundary condition =0 at x = 0 we find

-Zi Cos a + Zr Cos =0, (68)

-Eio + E)= O. (69)

From this it follows that zi = zr and a = . Hence the angle of incidence is equal to the
angle of reflection, and the reflected wave has the same amplitude and phase as the incident
wave as it leaves the wall.

y s -so reflected

Figure 4: Reflection on the cylinder with an incident ray of angle of incidence 0/2.

We now return to the global view (Figure 4). Consider a ray hitting the cylinder at an
angle of incidence 0/2. Then it hits the cylinder at (x,y) = a(cos o/2, sin,3/2). At that
point the incident ray has phase

19o = -k..(a cos //2 + ca,3/2). (70)

The phase progression along the reflected ray is given from (59) as

0' + k, (s - so - ca(O - 0/2)), (71)

where s is the distance along the ray from the focus, and so is the distance from the focus
to the point at which the incident ray hits. The focus is the point inside the cylinder from
which rays locally spread out from. Geometrically so is found to be so = a/2 cos /3/2. Hence
combining (69), (70), and (71) we find the phase progression along the reflected ray as

Or = koo s- cos/3/2 - caO. (72)

Rays spread out radially from the focus. z2dS = constant along a ray tube, and the
incident wave has unit amplitude. Hence we have that the amplitude of the reflected ray is
given by

so Vacos 0/2 (73)
Zr K-0
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Hence the reflected field takes the form

a cos/3/2 eikA (s-3a/2 cos 3/2-(_aO)O 'cs e (74)
ýý 2s

5.3 Diffracted Wave

To calculated the diffracted field we first go back to the problem of a point source rather
than an incoming plane wave, as we will find diffraction coefficients by comparison with the
Green's function of a point source. We apply the geometrical theory of diffraction (GTD)
to the problem (Figure 5).

Shadow boundary Grazing ray

Diffracted rays

Figure 5: Cartoon of the geometrical theory of diffraction. The grazing ray hits normal
to the cylinder and produces a surface ray. This surface ray travels around the cylinder
constantly shedding diflracted rays normal to the cylinder.

5.3.1 Incident rays

Consider a point source located at the point (ro,0) in Cartesian coordinates (Figure 6).
Consider the two rays which leave this point and hit the cylinder at right angles. Let a. be
the angle between the point at which the rays hit the cylinder and the horizontal. Then the
wavenmnber at infinity for this ray is given by k,= (-sin a, ± cos a) where + is the top
ray and - is the bottom ray. At the points at which the rays hit, U = ±cc(- sin a, ± cos a),
so that the top ray hits going with the flow, and the bottom ray hits going against the flow.
The wavenumber vector at the points the rays hit are then given by (56) as

k = ko,(1 +: e)(- sin a, ± cos a), (75)

or in terms of the unit vector eo as

k -'p =/k,(1 - c)e0, kbI -ke(1 + e)eo. (76)
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P(r, 8)_ V/rR a a2 Pi ayil Q,

P2 Q (r0,0)

a'Y2 Q2

Figure 6: Geometrical theory of diffraction construction for a point source. There is a

point source at Q and we are observing the field at a point P in the shadow region. Two

rays paths are shown, one which involves an anticlockwise surface ray from Q1 to P 1 , and

another which involves a clockwise surface ray from Q2 to P 2 -

Hence as these incident rays hit the cylinder their wavenumber vectors are tangent to the

cylinder. The phase progression along these two rays is given by (59) as

e(Q 1)= k. (ro -a2-faa) , (77)

O(Q 2 )= k.( r0 --a2+Ea). (78)

The field due to a point source in free space with no mean flow has the form

4 iir/4 eik~r'H0(1) (k ..r),• (79)

where r' is the distance from the point source. Hence the amplitude of the rays as they hit

the cylinder is given by
ei~r/4

z2(Q1) = e- (80)

5.3.2 Surface rays

In the geometrical theory of diffraction, a ray hitting the cylinder at right angles causes

the production of a surface ray. This ray is contrained to go around the cylinder, and

sheds diffracted rays tangent to the cylinder as it progresses around. On the surface ray

k = ±keo. The surface dispersion relation is then

w = Q•(x,k) = ck(1 ± E) (81)

which is a constant independent of position. Hence the magnitude of the wavenumber vector

is a constant along the surface ray, and depends only on the direction of travel. For a surface
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ray travelling with the flow k = ko,(1 - c)eo, and against the flow k = -ko,(1 + C)eo. Thus
the corresponding phase progression along the with flow surface ray is

O(P1 ) = O(Qi) + k.(1 - c)a'7i, (82)

where '71 is the angle travelled around the cylinder. Similarly for the against flow surface
ray

e(P 2) = E(Q2) + k.(1 + E)a-Y2, (83)

where _72 is measured in the opposite direction.
Using the GTD we assume the amplitude of the surface ray is proportional to the

amplitude of the incident ray that created it. Namely, that

zS(Q1) = di(Q 1)zi(Q1), (84)

where d, (Qi) is a diffraction coefficient depending only on the curvature of the surface. In
the GTD it is proposed that the rate of decay of wave action A travelling along the ray is
proportional to the wave action. Namely, that

dAdA -2aA, 
(85)

where a is arc length along the ray and a is a constant depending solely on the curvature
of the surface. The wave action of the surface ray is proportional to the square of the
amplitude and hence the surface ray decays exponentially in amplitude as

zs(PI) = e-' 1 z'z'(Q,). (86)

5.3.3 Diffracted rays

As the surface ray travels around the cylinder it sheds diffracted rays. A diffracted ray
leaves tangent to the cylinder. so the phase progression along the diffracted rays is given by
a similar equation to the incident rays, namely

O(P) = 0(Pj) + k,, (~r2 -a 2 - can) , (87)

O(P) = O(P1 ) + k ( (v - a2 + caO) , (88)

where 0 is the appropriate angular progression after leaving the cylinder. We assume the
amplitude of the diffracted ray is proportional to the amplitude of the surface ray which
shed it. As diffracted rays leave the cylinder they spread out, and so the amplitude is
inversely proportional to the square root of the distance from the cylinder. Hence

zd (P) d2(PI) (89)
(kVr 2 - o?)1/2

where d2 (P1 ) is a further diffraction coefficient dependent only on curvature, and k,, is
an appropriate non-dimensionalisation factor. By the reciprocity relation of the Green's
function we must have that d1 (Q1) = d2(P) = d., a constant. However there is still a
possibility that the diffraction coefficient d and decay coefficient a' may depend on the
direction of travel around the cylinder, whether going with or against flow. However, when
considering an asymptotic evaluation of the Green's function later it will turn out that they
do not.
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5.3.4 The diffracted field

Diffracted rays are simply ordinary geometric optics rays. Combining the phase progression
equations we find that for the top travelling rays the phase at P is2- aa a, )%

O(P) =k,, (VrO-a 2 +'i r2 -2EaO), (90)

and for the bottom travelling rays the phase at P is

O(P)= ko -a 2 + ay2 + Výr a2 + Ea (2 O)), (91)

where

"Y1 = 0 - cos-1 cos -, (92)
ao a

72 = 2 - 0 -o 1 c 1a os- (93)
rO r

Combining the amplitude equations we find

z(P) = ei•/4e- aad 2

0() - a2 r2 -a 2 )1/2 (94)

Hence

edP = d ik, (V r2ý-a-2±x/,-2-) (iko-,,oj)a Cos-ir421 a-+COS-1 a
Od(P) = (87k 2  r• - a/r -a)

x (e(ikc°(1-E)-a)aO + e(ik (1+)-a)a(27r-0)) (95)

However, note also that there are also further rays due to multiple orbits of the cylinder by
the surface ray. These rays just give additional factors of 2mwr added to 0 and 27r - 0 where
m E N. These extra terms are easily summed as they form geometric series. Furthermore,
when the ray hits it excites numerous surface rays with different aj and dj. This leads to
the final expression

ze/4dj ik ( + r2a2)_(ik di 
a(cos-' -o +Cos-1 a)

O d (P ) = E . e8k v • _ •o arl/

S(87k2, Vrr-T :a 2 r2 
-- a2)1/2

1 e(" +(1_ J)aa e(iko (l+6)-a))a(2i-)
(1 - e2wa(ik•(1E-- ) • - e2ra(ik. (+)a .) (96)

Unfortunately, to obtain the coefficients aj and dj we must look back to the eigenfunction
solution.
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5.3.5 Asymptotics of the eigenfunction solution

We return to the Green's function solution for a point source (39). Write this as

G(x, xo) ý- ] F,+ck.aeivO (97)
t, CZ

where

F, = 1 HV2 ) (kloo7riII)H(1') (k,,a) - HL 1 1)(kormin )H '(2) (koa) H; 1 ). (98)

Let F(1) be the function which gives analytic continuation of F, to all complex v. Then

by performing a Watson transform we may write

G(xxo) i I ei(°-7) F(v + cEka) dv, (99)
2 0) sin v7

where F is a contour around the real axis. Exploiting the fact F(V) = F(-v) this integral
can then be rewritten as

i /" 1 e' (0-7r) e-iv(0-T)
G(x, xo) = - . F(v + ek,,a) + s F( - Ek,,a) dv. (100)

2.1""+i sinl v7 inv

where 3 > 0, with the contour being just above the real axis. Consider the integral J+
defined by

.7 + i C ± iZ (0- 7r),6= I il F(v ± ckca) dv. (101)
-c iS sin vTr

We close the contour in the upper half plane. Note that this (:an only be done in the
diffracted region. The only contribution to the integral comes from residues in the upper

half plane. We get residue contributions wherever H' 1 ) (ka) has zeros, where i = v±Ek,,a.
For large Q, kcca the zeros of H[,(koca) are given by

k,,, 1/3 i7r/3 , 1 2
k,,a - ( 2)ee qj, (102)

where qj are the roots of the derivative of the Airy function, Ai'(qj) 0. Hence

ij= :jT ck,,a - ]ka(] T) - qjei/3. (103)

The poles are in the upper half plane, and are all simple so we find

e ±i V: (0- 7r) I2(k a
H ( (k ± H (k. H'r) )ka" (104)

s i V , 07 F ii a )• c

The factors in front can be rewritten as
e+it,' (0-71) 2iei,9 0 e -,; (0-7r) 2ievj (27-0)= i , e- (lOe

s i + 7T 2.iI 27rji (105)
Ie -1 sin 1 7 e i-i
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Since F, ,-i kcca, for large f, koor the Hankel function has asymptotic form

Hr( ')k(koor). e iko V2 -a2 -ij cos- I r e-i-/4, (106)

and HI4) (kro) will have a similar asymptotic expression. It can be shown that

1(2) (k,,a) e5 i~r6  (ka~1/3 S (107)

"•H-()(k.c a) 2w(-q) (Ai(qj) 2

Combining all these expressions, and comparing with GTD solution (96) eventually yields
the diffraction coefficients as

e5i~r/6 •a1/3,

a k2,

____=_--ei7r/24 (ka a1/6
d, = (2)U1/4(-qj)/ 21 Ai(qý)I k 2 (109)

Note that qj is real and negative, and Ai(qj) is real.

5.4 The diffracted field of an incident plane wave

Now the diffraction coefficients have been found, the case of an incident plane wave can be
solved by a similar construction. The corresponding solution is

d3 2  eik• r2--2-a2-(ik °-aj)a(ir/2+cos- 4 )

e (k1(1_)-j)aO e(ikoo(i+E)- i)a(276-0) (110)× 1- e27Ta(ik(1-E)-aj) I - • e2r~k,(+ ) 110

6 Fresnel Region

We return to our governing equation

2ic~kooa& 0bV200 2 0. (111)

Note the substitution 0 = oe-ick' 6aO yields simply

V 2 (p +k = 0, (112)

the Helmholtz equation for o to O(c 2). This reflects what we have been seeing in our ray
calculations so far: the effect of the O(E) mean flow is simply a phase shift determined by
the angular procession of rays around the cylinder.
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Shadow boundary

GTD Geometric Optics

Shadow boundary

Figure 7: Cartoon of the different asymptotic regions. There is a further asymptotic region
in the neighbourhood of the point at which the grazing ray hits (the Fock-Leontovich region)
which we have not solved for.

At the shadow boundary the geometric optics field is discontinuous. Moreover, the GTD
solution blows up at the shadow boundary. On the shadow boundary the solution takes the
form of a Fresnel integral which we now derive (Figure 7). Solving for the Fresnel region is
equivalent to solving for the field due to an incident wave past a flat screen. It is important
to note that the Fresnel solution has no knowledge of the curvature of the surface.

Consider the ray which hits the top of the cylinder defining the shadow boundary. Far
above this shadow boundary the field is dominated by the incident field, which takes the
form )/i = e-ik-,2-i(,a-O. This motivates searching for solutions to (111) of the form

0 = ve-ik.x-ick°a° (113)

along the shadow boundary. We are solving in the left half plane for a wave coming from
the top, so 0 must be defined so that -r/2 < 0 < 3&w/2. Substituting in to (111) yields

vxa - 2iký,vx + vyy = 0. (114)

Introduce boundary layer variables x' = -x, y' =,kcl2 (y - a). This boundary layer scaling
implies that far away enough from the cylinder the Fresnel regions fill in the shadow region.
(114) becomes

vz'x, + 2ikoovx, + koyy, = 0. (115)

Hence expanding for large k1, we find the leading order term vo is given by

2ivox, + vo,y, = 0. (116)

This is the paraxial wave equation. We introduce a similarity variable q7 = y'/,x,1 2 and let
v0 = .f(i). The above then reduces to

- i = 0. (117)
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As we go out from the boundary layer we want the solution to match on to the incident
field for y > a and to go to zero for y < a in the shadow region. This allows us to give the
final solution for the top Fresnel region as

of eik -ikaO + e-i/ 4 Fr(t(- -a))) (118)

where 7T/2 < 0 < 37r/2 and Fr is the Fresnel integral defined by

Fr(z) = ert2/2 dt. (119)

A similar derivation for the bottom shadow boundary leads to

bot = e +± - (r 2,/ , (120)

where it is important to note that 0 is defined in this expression so that -37r/2 < 0 < -7r/2.
We now have three asymptotic expansions which are valid in three different regions:

the geometric optics solution is valid outside the shadow region, the GTD solution is valid
inside the shadow region, and the Fresnel solution is valid in a neighbourhood of the shadow
boundary. From these we can construct a uniformly valid solution by forming a composite
expansion, and such a solution is plotted in Figures 8 and 9.

ifi

S '#

Figure 8: Plot of potential with c=0, k,,a 10. Left picture shows the eigenfunction

solution, right the ray tracing solution. The two plots are remarkably similar, demonstrating
teeffectiveness of the ray tracing approximation. In the ray tracing solution there is a

small numerical problem along the shadow boundary.
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Figure 9: Plot of potential 0 with c 0.25 (left picture) and E = 0.3 (right picture) and

ka = 10. Notice that refraction causes wavefronts to be out of phase on the left of the

cylinder on thc left p)icture, but in phase on the right picture.

7 Force on the cylinder

We are interested in calculating the time averaged force F on the cylinder. This is simply
given by integrating the time averaged pressure around the cylinder

F = - J n dS = - p(cos 0, sin O)a dO. (121)

where p is given by (28). The previous sections were devoted to solving for 0', but to find
the force at second order in wave amplitude 71 we must also specify ýý2. To the order we
are concerned with 452 is the solution to Laplace's equation. The boundary condition on
r = a is simply ii- • n = 0, but the question of what boundary condition to apply at oc is
harder to answer. We could apply W2 = 0 at oc, i.e. no Eulerian mean velocity at second
order. However, this would imply that there is still an 0(772 ) mass flux past the cylinder
given by ij2;/ u1; the Lagrangian mean velocity is non-zero. This phenomenon of net mass
flux is known as Stokes drift. A perfectly acceptable alternative way of setting the problem
up would be to demand no mass flux past the cylinder, i.e. no Lagrangian mean velocity at
second order. There is no single "right way" of choosing the boundary condition on W2 at
oc. Once we are given the constant velocity at infinity, u2 zI2-(cos a, sin a) as r ' 00,

Laplace's equation has the classical solution

0 2 = (r + cos (0 - (122)
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7.1 Force calculation by ray tracing

It is straightforward to calculate the force from the ray tracing solution. The dominant
contribution to 0 comes from the side of the cylinder on which the wave is incident ("the
bright side"), and there the field is given by geometric optics as the sum of the reflected field
and the incident field. On the cylinder the reflected field has the same phase and amplitude
as the incident field. Hence on the bright side of the cylinder

2 C -ik0 0 a(cos9+EO) (123)

w

where we have inserted c2/w, an appropriate dimensional factor. We calculate each term in
the time averaged pressure (28) from (122) and (123):

1 / , 2 1 e (__
2C2 \a&t / C2  ot at / 4C2 1b = c2, (124)

= -1 Re (V¢/*- Vol) = -IV,012 = c2 (-sin20 + 2Ecsin0), (125)
1 4 1 4&¢*v.
c1 at, U Vol Re a-*U)- o 1 Re (iwo*V • VO) = -2c 2c sin 0, (126)

-U V = 2Ecu-2, sin (0 - a), (127)

where we have used the identity AB = Re(A*B)/2. Thus the time averaged pressure on
the bright side of the cylinder is

constant + 7i2Hc2 (cos2 0 + 2EU2o sin (0 - a))+ 0(713),c -r/2 < 0 < 7r/2. (128)

On the dark side of the cylinder there is no leading order contribution from the linear waves,
but there is still a contribution from the U • V4 2 term:

= constant + r2 HC 2 0 + 2 EU20° sin (0 - a) + O(73), 7r < 0 < -r/2 (129)

Integrating the time averaged pressure around the cylinder we find the 0(72) time averaged

force is given by
S( ))

F= p(cos 0, sin O)a dO = 772Hc2 a (-4/3,0) - 2 U2o (-sin a, cos , (130)
-7 r C

or in terms of the circulation F 27cca,

F = 2 (Hc2 a(-4/3, 0) - Hu2-- F(- sin a, cos a)), (131)

where the last term can be recognised as the usual expression for the Magnus force due to
flow past a cylinder.
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7.2 Force calculation by eigenfunction solution

We can also calculate the force using the eigenfunction solution (48). After some algebra,
we find

F= 72 (Hc2a(S(k#,,a), 0) - HU-2 F(- sin a, cos a)) , (132)

where S(z) is a real valued function defined by

S =2i .z2 m(m - 1) (133)sEZ (z H'7n.-I(Z

Note that S(z) is independent of c so that the only 0(c) contribution to the force is still the
Magnus force term. Also, by comparison with the ray tracing solution we have S(z) , -4/3
as z - oo. The form of S(z) agrees with a similar calculation for the acoustic force on an
elastic cylinder given by [4].

8 Conclusions

To 0(E) we have found expressions for the field resulting from the scattering useful for
both small k,,a (the eigenfunction solution) and for large k,,a (the ray tracing solution).
The effect of the O(E) circulation is simply to add phase shifts in appropriate places in the
calculation, and importantly it does not change the diffraction coefficients.

The 0(e) force has been calculated. It is important to note that we now have to specify
parts of the O(712 ) problem which we didn't have to consider in the no mean flow case.
However, the only 0(c) contribution to the force turns out to be a Magnus force due to the
mean Eulerian flow 719T-I2  past the cylinder.

To solve the 0(f 2) irrotational problem requires a lot more work. Firstly the governing
partial differential equation is no longer separable. When calculating diffraction coefficients
comparison with the eigenfunction solution was essential, and so this is an important stum-
bling block for application of the geometrical theory of diffraction. To 0(f 2) the rays are
no longer straight, and so also we lose a lot of the geometrical considerations which made
the 0(e) mean flow problem so similar to the no mean flow problem.

A probably tractable generalisation of this problem would be to look at the case of a
rotational mean flow at O(c). Here the rays are still no longer straight, but the ray curvature
can be expressed simply in terms of the vorticity of the mean flow [3, 6].
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Fluctuations in chemical reactions in a large volume
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1 Introduction

Chemical reactions are very often modelled by ordinary differential equations, where the
concentration of a particular particle evolves according to a deterministic law. But, in order
to be able to answer several questions where the discreteness, hence the intrinsic fluctua-
tions play a role, one needs to describe the system by a stochastic model. We assume
the chemical system to be well-stirred, so that all the particles are distributed in space
appropriately uniformly. Also we a.ssume the number of reactions occurred to be Poisson-
distributed, i.e. the waiting times between different reactions are distributed exponentially
with given rates. This is, in a nutshell, the essence of the Kinetic Monte Carlo (KMC) mod-
els of chemical reactions. These models are discrete and non-deterministic, as opposed to
the deterministic, continuous models governed by Ordinary Differential Equations (ODE),
and the non-deterministic, continuous ones, governed by Stochastic Differential Equations
(SDE). The last two models, are simpler and can be obtained from the KMC in certain
limits.

The drawbacks of the deterministic description are well-known. It leads to no fluctua-
tions, a, very important characteristics in certain cases. The model governed by SDE is the
so-called diffusion approximation of the original system. It is a non-deterministic model,
hence it detects the intrinsic fluctuations. However, it may not be good enough, if we are
concerned in the exponentially large (small) variables and/or we deal with exponentially
unlikely events. We will consider the Sch]6gl model as the simplest model with bistability
(two stable equilibriums predicted by the deterministic description) and, as an example of
an exponentially large observable, we will consider the switching times between two stable
states. On that example it will become clear why the diffusion approximation governed by
SDE is not satisfactory.

This report is organized as follows: first, in Sec. 2 the Schl6gl model is introduced as a
deterministic one. Next, in Sec. 3, we will introduce the KMC model, where the number
of particles evolves as a I\arkov jump process. In the Sec. 4 we will show how to get the
simpler descriptions (ODE and SDE) as large system volume limits of the Markov jump
process. Also, in order two motivate the use of the exponentially large observables, we will
introduce the simplest theorem in the large deviations theory, in Sec. 5. Afterwards, in Sec.
6, we will apply the introduced ideas to the Schl6gl model, emphasizing the calculations of
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the mean first passage times, that are exponentially large,, hence reveal the the drawbacks
of the diffusion approximation. Finally, the Sec. 7 will be devoted to a short discussion and
conclusions, as well as future work.

2 The Schl6gl model and its deterministic description

Consider the following chemical reaction, introduced by Schl6gl [1] as a catalysis model:

2X +±AL 3X
T2

(1)

X B.k4

We denote the number of particles X, A and B by the corresponding letters. Then, keeping
A and B fixed and of the order of the system volume V, we are interested in the evolution
of X. ki are the rates of the corresponding reactions in (1).

The simplest description of the system is the deterministic one, where the concentration
x = X/V is a deterministic, continuous variable, time evolution of which is governed by the
ODE:

dx- = u(x) - d(x). (2)

Here we denoted u(x) = kix 2 + k4 and d(x) = k 2x 3 + k3 x.

For appropriate choice of parameters, the function f(x) = u(x) - d(x) has three real
roots: the middle one corresponds to the unstable equilibrium, while two others are the
stable equilibrium values. See Fig. 1. Hence, depending on the initial value, x will expo-
nentially approach to one of the two stable equilibriums, see Fig. 2. In a certain sense, the
Schl6gl model is the simplest one that leads to the bistability. Third order polynomial is
normally the first choice, if we want to have a function of three real roots.

Although the deterministic model is simple to analyze, it is a good approximation to
the real, discrete system only in the limit of large volume and for finite time intervals [2, 3].
It is not able to answer to questions related to the stochastic behaviour of the system,
namely, the intrinsic fluctuations of the system are not detected. Consequently, it leaves
open the question of relative stability: near which of the two stable equilibrium states we
are more likely to find the system at a randomly chosen time? The system spends most
of the time near one of the equilibrium states, but fluctuations can sporadically drive it
to the neighborhood of the other equilibrium. In order to analyze the intrinsic fluctuative
behaviour of the system, we will next introduce the discrete stochastic model (Kinetic
Monte-Carlo scheme) according to which the chemical reaction happens.
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The right hand side of the deterministic equation
C

4

2-

-2
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-61
0 0.5 1 1.5 2 2.5 3 3.5 4

x

Figure 1: The deterministic rate 'u(x) - d(x) for 'u(x) 6x.2 + 6 and d(x) x 3 + 11x, i.e.
k1 = k4 = 6, kc2 = 1 and k3 = 11.

The ODE solution

X 2 -

0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

Figure 2: The time evolution of x(t). Depending on the initial value, it approaches one or

the other equilibrium state.
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3 Discrete model as a Markov jump process (Kinetic Monte
Carlo)

The reaction (1) can be rewritten as:

X u_() X +1

(3)
xD(__X)xI.

Here the rates of moving "up" and "down" are, correspondingly,

U(X) = VX(X - 1) + k4 V and D(X) =k2 X(X - 1)(X - 2) + k3 X. (4)

Recall that, without loss of generality, we absorbed A and B into the system volume V.
Hence, our model is one-step Markov jump process (see [4]) and is governed by the

following Master Equation (forward Kolmogorov equation) for the probabilities P(n, t) =

P{X(t) = n}:

OP(n,at) U(n - 1)P(n - 1, t) + D(n + 1)P(n + 1, t) - (U(n) + D(n))P(n, t)

( (f*P)(n, t), (5)

where L* is the adjoint of the generator L of the process. The generator of a Markov process
X(t), by definition, is the operator

(Lf)(n) = lim E{f(X(t)) - f(X(O))IX(O) = n} (6)

which for one-step Markov jump processes takes the form

(Lf)(n) = U(n)[f(n + 1) - f(n)] + D(n)[f(n - 1) - f(n)]. (7)

The generator defines the Markov process completely. Also, if we define

v(n,t) = E[f(X(t))IX(O) = n] (8)

for any observable f(n), then v(n, t) solves the partial differential equation (backward Kol-
mogorov equation)

vt = Lv (9)

with initial condition v(n, 0)= f(n), see [5].

4 Large system volume limits

In order to analyze large system size limits, let us pass to intensive variable x = n/V = cn.
In terms of x, the generator has the form

(4J)(x) = f- ue(x)[f(x + e) - f(x)] + E-'d,(x)[f(x - c) - f(x)]. (10)
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Here
u,(x) = U (x/E) = kix(a - c) + k4 = U(x) + EUI(X)

and
d,(x) = ED(x/e) = k 2 x(X - c)(x - 2e) + k3 X = d(x) + edi(x) + O(E2).

Hence, the leading order rates are, correspondingly, u(x) = klx 2 + k4 and d(x) = k 2 x 3 + k 3x.
The Markov process corresponding to the generator (10) is the same as in the original

model, only with the rates and jump sizes rescaled by c. Instead of working with the Master
equation, we will explore the generator £C itself, i.e. the backward form

Vt = £Lv. (11)

Expanding the generator (10) in the small E limit leads to

(£Cf)(x) = [u(x) - d(x)]f'(x) + e[ui (x) - di (x)]f'(x) + - [u(x) + d(x)]f"(x) + o(e2).

To the leading order, we get the differential operator

(Cof)(z) = [u(x) - d(x))]f'(x) (12)

corresponding to the deterministic description (2), discussed in Sec. 2.
To the next order O(c) we obtain the backward form of the Fokker-Planck equation (see

[6])
(,CFpf)(x) = ['(x) - d(x)]f'(x) + c[ui (x) - d, (x)]f'(x) + - [u(x) + d(x)]f"(x), (13)

2

which leads to a stochastic differential equation for x(t):

dx = [u(x) - d(x) + c(u1 (x) - d, (x))]dt + \/c(u(x) + d(x))dW. (14)

This corresponds to the diflsion approximation of the process, with drift u(x) - d(x) +
E(u11 (x) - di(x)) and diffusion E[u(x) + d(x)]/2.

In contrast with the deterministic description, the diffusion approximation takes the
fluctuations into account, but it is not good enough if we are dealing with rare events, that
arise when we calculate exponentially large (small) observables. In the next section we will
introduce basic large deviations ideas, in order to qualify "rare events" in a more formal
way.

5 Large deviations principles

5.1 Large deviations principle for random variables

Let us start off with the large deviations principle for the random variables. Suppose we have
independent, identically distributed random variables xi with the common mean Exi m
and moment generating function M (O) = E .
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The well-known law of large numbers states that the average of these variables goes to

m in probability as the ensemble size goes to infinity:

Xl+...+xn PSm as n --ý oo, (15)
n

hence, for any a > m,

P{x1±+ f + >a --- 0 as n - oo. (16)

The natural question arises: what is the convergence rate in (16)? Since eox is a monotone

function, we have

P {x, + ... + xn > na} = P eO(xI+--'+xý) > efna } < eOnaE eo(x1++Xn). (17)

The last step is just an application of the Chebyshev's inequality. By independence, we get

P {Xl + -.- + Xn > na} < e-OnaM(O)n = e-n(Oa-logM(O)) for all 0. (18)

Since (18) works for all 0 we can define the action (rate) function 1(a) = sup{Oa - log M(O)}
0

to obtain a stronger inequality:

P{X1 + ...- ]- Xn > na} - e-1(a). (19)

The basic theorem in the large deviations theory states that the bound in (19) is sharp,

namely,
1-o 1+..+X > a 1-l(a) (20)
n f n

as n -- oco. See, say, [7, 8]. We say that the exponentially unlikely event {x1 + ... + x, > na}

satisfies the large deviations principle with the action function l(a).

5.2 Large deviations expansion

We will look at an observable v(x,t) = E[f(X(t))IX(O) = x] with f(x) = eg(x)/E for some

function g(x). This motivates the ansatz v(x, t) = eO(x,')/E. We plug it into (11) and expand

the nearby values of the exponent O(x,t) to obtain, in the highest order -1, the partial
differential equation

Ot = u(x)(eOx - 1) + d(x)(e-¢x - 1) (21)

with initial condition q(x, 0) = g(x).

ZProm the other hand, if we used the diffusion approximation with its generator £FP

before applying the WKB ansatz above, then we would get, again in the leading order C-,
a wrong PDE for the exponent function q(x, t), namely,

S= - ~x)(x)+ + d(x) .2Ot = [u(x) - d(x)]x+ u x2 ) x. (22)
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Therefore, if we are interested in exponentially large observables with the exponent of
O(- 1 ) = O(V), then the diffusion approximation, hence the corresponding SDE (14) lead
to a, systematic error in the exponent function O(x, t).

We may go to the next order by taking O(x,t) = 00(x,t) + col(x,t). Then 00(x,t)
satisfies (21), whereas q/) (x, t) can be expressed as 1 (x, t) = In z(x, t) with z(x, t) satisfying

2z ( (u(x)e(-o)x - d(x)e-(0o)x), (23)

which can be solved, as soon as o0(x, t) is found explicitely.

5.3 Moderate deviations expansion

Let us now look at an observable of the form f(x) = eg(x)/6 with 1 >> 3 >> E, so we are
dealing with moderate deviations, as opposed to the large deviations, where we had 3 = e.
One can think of 3 (' with 0 < a < 1. This will motivate the moderate deviation
ansatz v(3, t) = e¢(x't)/a which, with both the correct generator £L and the Fokker-Planck
generator CFP in the backward equation, leads, in the first two orders, to the same equation
for the exponent function q(x, t)

c u,(x) + d(x)
ct + (v#) - d(x))q5, + - 2 = 0 (24)

with initial condition 4)(.r 0) = g(x), as before.
Therefore, we can claim that the diffusion approximation is good enough in describing

up to moderate deviation events. At least. it gives the correct exponent (action) function.

6 Solving for the action function

6.1 Classical mechanics interpretation

We will focus on the large deviations case v(x, t) e¢(x'i)/( leading to the equation for the
action function <(x. t)

Ot = 71(X)(C"- - 1) + d(x)(e-Ox - 1) (25)

with initial condition c/(x, 0) = g(x).
Notice that, this equation is of the Hamilton-Jacobi form Ot + H(x, 0,) = 0, hence

can be solved by the method of characteristics. The (x,t)-plane is being covered by the
characteristics (rays), and the evolution of O(x,t), as well as x, is tracked along these
characteristics according to a system of ODE, see [9, 10].

First, we read off the formal Hamiltonian H(x,p) = u(x)(eP- 1)+d(x)(eP- 1), and the
momentum is introduced b)y p = 1) The corresponding Lagrangian can also be calculated:

dx + H-T 4u (x.) d x) 1 x
d dx -o dt Ldt_______L yr(r, = dlog 2ux )j+d)- + 4vu(x)+dx). (26)
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Figure 3: The phase portrait of the Hamiltonian system corresponding to the Hamilton-
Jacobi equations for the action function q(x, t).

The system evolves along the characteristics H = const according to the Hamiltonian
system of ODE

d! = u(x)eP - d(x)e-PS~(27)

j 2 = -u'(x)(eP - 1) - d'(x)(e-P - 1)

while O(x, t) evolves by

dO dx dxd-- = Ot + Ox •- H(x,p) +p- =

dt Xdt dt

=L (X x,-(x,p) =u(x)(pep-ep +l)-d(x)(pe-p +e-p-1). (28)

Also, by Hamilton's principle, O(x, t) solves the variational problem

¢(x, t) = inf {j L(x, dx/ds)ds + g(x(O)) , (29)

where the infimum is taken over all C' [0, t] functions x(.) with x(t) = x.

6.2 Switching times in the Schl6gl model

For the Schlgl model, H = const paths are shown in Fig. 3. Using the phase portrait of the
corresponding Hamiltonian system, the solution q(X, T) of Hamilton-Jacobi equation with
an initial condition q(x, 0) = g(x) is obtained in the following way. We take the vertical
line x = X and trace all the points backward for time T. That will give an "initial" profile
f(xlp) = 0 of the points that lead to X at time T. The intersection of this profile with the
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real initial curve p = g'(x) will give the initial value (in fact, there could be more than one

intersection points), therefore, the correct characteristics, leading to the point X in time T.
This is the essence of the "shooting" method [9].

As mentioned in Sec. 2, one of the most important questions for bistable systems is:

which of the stable states is more stable? To answer it, we should compare the mean first
passage times (called switching times) from one stable state to the other.

Mean first passage time T(x) from a state x to a fixed state xf solves the backward

equation -1 = £T(x) with the appropriate boundary conditions [4, 5]. For the one-step
jump Markov processes the mean first passage times can be calculated exactly from the

backward master equation and it leads to the large deviations asymptotics of the form eO(x)/E
for some action function O(x). In general, deterministically forbidden switches between two
states (in the deterministic case, see Fig. 2, switches that have to pass through x = 2
are not allowed) are large deviation events. The large deviation analysis applied to the
-1 = £T(x) (as opposed to (9), discussed above) now will lead to the time-independent

Hamilton-Jacobi equation

0 = U (x)(eC - 1) + d(x)(e-x - 1) = H(x, Ox). (30)

Therefore, large deviation paths on the phase portrait, are the ones corresponding to H(x,p) =

0. These are the heteroclinic connections, and they correspond to p 0 and p = log d(x)

as can be seen in Fig. 4. From (27) one can see that p = 0 leads to the deterministic

description j. = u(x) - d(x), where the switches between the first and third equilibria x,
and x;3 are not allowed (in order to go from one to the other, the path necessarily leaves
the axis p = 0). To switch from x, to X3, while staying on the H = 0 curves, the system
has to "climb" the non-deterministic path xl-to-x 2 and then follow the deterministic one,
x2 -to-x 3 on the x-axis. Similarly, the switch from X3 to XI has to go through the "valley"
x 3 -to-x2 and then follow the deterministically allowed path on the x-axis, x2 -to-xl.

By (28), the exponent (action) 013 = clog T13 for the switching time T13 from xa to X3

can be found by

51 3 =f -H( p +Pd, dt= 2 pdx = log ( dx = the area S 1 , (31)

since p = 0 on the second part of the path and H = 0 throughout the whole path. Similarly,

031 = pdx = & log U dx = the area S2 . (32)
d(x)c3 2

For instance, from the Fig. 4 we can see that in this particular parameter regime

S1 > S2 , hence T13 > T31 . Since it takes longer to switch from x, to X3 than vice-versa, we
can conclude that the first equilibrium is the more stable one.

The important point here is that if we used SDE to model the chemical reaction (or,
equivalently, if we used the diffusion approximation before the large deviation ansatz), it
would not give the correct Hamniltonian, hence the switching times would be miscalculated.

Also, the parameters ki can be tuned so that the two stable equilibriums are equally

stable, and there are certain parameter regimes where the diffusion approximation gives the
opposite, wrong answer to the relative stability question.
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Figure 4: The H 0 curves are heteroclinic connections. They correspond to p = 0 and
p log d('). Parameters are picked so that xi = i for i=1,2,3 are the equilibrium states.

7 Conclusion and future work

In this report we have introduced the Kinetic Monte Carlo modeling of chemical reactions,
paying particular attention to the benchmark bistable system - the Schl6gl model. The
main reason of using KMC is that the simplest, deterministic model of a chemical reaction
is not satisfactory at all as we are interested in fluctuations in concentrations. We have
also discussed the SDE approach to the problem and have shown that it is not able to cor-
rectly answer questions concerning large deviation events/observables. If we are interested
in exponentially large observables (e.g., switching times between two states that are nor
reachable from each other in the deterministic case) with the exponent proportional to the
volume of the system, then SDE approach gives a systematic error in the exponent function.
The reason is hidden in (10): we need to plug the exponential ansatz into it first and then
expand the exponent function, as opposed to the SDE approach, where we expanded (10)
to arrive to (13), and then plugged in the exponential ansatz.

In fact, the work can be carried out for general Markov jump processes with generator

k

(12 f)(n) = E Ai(n)[f(n + ei) - f(n)] (33)
i=1

and its rescaled version
k

(4Ef)(x) = c -Ai (x)[f(x + cei) - f(x)], (34)
i=1
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where ei are the jump sizes (there are k possible ones) and Ai(n) are the c-independent
propensity functions (rates) corresponding to these jumps. Then the deterministic gen-
erator is (£of)(x) = ]Z_1= Ai(x)ei] f'(x) and the Fokker-Planck one is_i= i~x~ -Plnck ne i (£CFpf)(X)

[z i1 (x)eil f'(x) + f _Z , Ai(x)ej f"(x). Finally, the Hamilton-Jacobi equation (25)
will be generalized as

k

Ot A(xWO - 1). (35)

For the particular model, the Schlgl's bistable system, we answered the question of
relative stability, pointing out again, that SDE approach does not answer it correctly, while
the deterministic description can not address that question at all. We have found the exact
formulae for the switching times from one stable state to the other and vice versa.

Similar questions may be posed for 2D models. The further work may include exploring
the compctition models from population dynamics in a manner of KMC. Here, the SDE
approach is even more widely used, hence it is important to understand that it may not be
good enough explaining the rare events, such as, in some cases, the competitive exclusion
of one species.
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1 Introduction

The phenomenon of turbulence remains one of modern physics greatest unresolved chal-
lenges. Turbulent fluid flow exhibits an extraodinarily complex structure which manifests
itself in a wide range of length and time scales, posing a significant problem in its ana-
lytical study as well as in numerical simulation. While many aspects of turbulence are
quite controversial, it is generally accepted that turbulence is characterized by a nonlinear
transfer of energy from large length scales to smaller and smaller ones, wherein energy is
dissipated at the length scale of the molecular viscosity V [5, 6, 8]. What can then be said
about energy dissipation in the regime of fully-developed turbulence-that is, as Re -* 00,

or equivalently, as v' 0?
In his 1949 paper, Onsager [7] made the surprising conjecture that turbulent flow can

remain dissipative even. i'n. the inviscid limit. By transferring energy to ever smaller scales
and gradually dividing it amongst infinitely many degrees of freedom, the driving mechanism
behind such "anomalous dissipation" is the energy cascade itself! Onsager thus suggested
that the role of viscosity in energy dissipation is secondary to that of the cascade process.
The purpose of this paper is to present simple exactly solvable models which exhibit these
very features of a cascade of energy and anomalous dissipation, and to demonstrate that
Onsager's conjecture is indeed realizable within this elementary framework.

1.1 Energy Balance and Onsager's Conjecture

We begin our discussion in the context of the 3D incompressible Navier-Stokes equations
with viscosity v > 0., forcing f, and periodic boundary conditions

ut + (u. V)u =-Vp + vAu + f, x E Q = [0, Lf]3  (1)

where f(x, t) is a stationary, homogeneous forcing acting on large scales:

Ef(x, t) =0, Sf(x,t)f(x',t')= F (X-L ) 8(t _ t,). (2)
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For our present discussion, let

f (x, t) = a W(x -(t) sin wLx + ' i(t) cos L 45i (3)

which satisfies (2) with F(x) = -a2 Zi=1 cos (271x • ei). Consider now the energy density
of the system

E(t) - j 2Eu2(x, t)dx 1ij l j li(r t fTit TU2(x, t')dt')" (4)

where the last equality holds by ergodicity. Multiplying (1) by u and integrating by parts
gives

W=d 1•EIu12dx = _V1 12

EQ(t) I 4 ud - fj-[ E.VuI2dx + (5)

where E = 3U2, the density of the energy flux into the system through forcing, appears by
Ito's formula. Assuming the system is in a statistical steady state (E(t) = 0) then there
exists a global energy balance between forcing and dissipation through viscosity:

E- v IVuI2dx =,F (6)

To arrive at a local energy balance, consider a dimensional argument with L = length
and T = time. Since

[Lf]=L [E]= L IV]= L (7)

the only length scale which can be derived from v and e is the viscous length scale
]13

CE-4V4 (8)

which vanishes in the inviscid limit. From a local perspective, energy that is pumped into
the system at the forcing length scale Lf cascades to smaller and smaller scales and is
subsequently removed from the system at the length scale of the viscosity l, (see Figure 1).

The cascade picture is more readily observed in the Fourier space setting. The Fourier
representation of (1) is

d -ik = -iPk' Z(q" ftk-q)fq - vlkl2fik + fk (9)
dt q

where Pk' = -kk is the projection on the space of divergence-free velocity fields and

ik1(t) = L] u(x, t)eik'xdx
fk(t) = L2-IL]3

) = f(x, t)eikXdx.B2 f[0,L]3
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Figure 1: Cascade of energy from forcing length scale Lf to viscous length scale l.

The first, second, and third terms on the right-hand side of (9) correspond to the mechanism
of energy transfer between modes, dissipation at I and energy input at L7-1, respectively.
By Parseval's identity, the energy equation is then

d I

E _(t) = - El kI'
k (10)

= iE PkIE (q. fUk-q)('bk" iiq) + c.c. - 1/E IkI2EI fk12 + E

k q k

with c.c. denoting the complex conjugate of the first term. The summands within the
energy transfer terms are commonly known as "triad interactions" due to the appearance of
coupling between the modes k, q, and k - q, consequently resulting in a nonlinear transfer
of energy. A formal rearrangement of the sum gives that

i E PkIE E(q ttk-q)('Uk" tfq) + C.c. = 0, (11)

k q

implying a global energy balance between forcing and viscous dissipation analogous to (6)
for statistical steady state solutions to 3D Navier-Stokes:

vE Ik12E1'k12 k 12 (12)
k

Is this formal rearrangement actually valid? If we presume the existence of a steady state
solution to (1) in the inviscid limit (Euler equation with forcing) then (11) is strikingly
false! For steady state solutions to Euler, the energy transfer and forcing terms balance:

E PkE E(q " '[Uk-q)(f'k '[1,q) -+- C.C. = E. (13)
k q
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The fact that the sum in (13) does not vanish provides some insight into the lack of regularity
of solutions to the forced Euler equation [3, 4]. In particular, since the Fourier coefficients
of u do not decay rapidly enough to allow absolute convergence of the sum we have that
such solutions maintain shocks, which allow for the anomalous dissipation of energy. This
is the heart of Onsager's conjecture: In the regime of fully-developed turbulence, steady
state solutions correspond to the most regular weak solutions of the 3D Euler equation
that allow for anomalous dissipation. In addition, Onsager proposed that weak solutions of
Euler conserve energy if they are H6lder continuous with exponent n greater than 1/3 [5].
In Fourier space, the H6lder condition is

E lklnlikl < c0 (14)

k

so if the previous sum is absolutely convergent with n > 1/3 then the conjecture gives that
the formal rearrangement in (11) is valid and energy is conserved. The sufficiency of this
condition was proved in 1994 by Constantin et al. [2] but necessity still remains an open
question.

The loss of regularity of steady solutions to forced 3D Euler can be observed through a
dimensional analysis argument. Define the second-order structure function

E(x - x',t) = Elu(x,t) - u(x',t)12, (15)

where the homogeneity of solutions u to (1) has been used. Then

L 2
[E (x, t)] =y2- [x] = .(16)

and there exists a function T7 such that

97 (E-12 x, xI 0. (17)

Assuming isotropy,

E=CE3xl2g (18)

for some g. Since we are interested in the inertial range l1 <K lx[ <K Lf with Lf fixed,
we first let 1, --* 0 (that is, let v -4 0) and then take lxi -- 0 to arrive at the celebrated
Kolnogorov two-thirds law

E = CE3 1x3, (19)

where we have made the assumption that lim- 0 1limc g(, ij) exists and is finite. In
Fourier space, the previous display is equivalent to the five-thirds law

Ek 3 JIkl- (20)

with Ek = E14k12. Using (19) and H1lder's inequality, one finds that the velocity field is

H6lder continuous with exponent 1/3:
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Elu(x, t) - u(x', t)I < gE(x - x',t) = O(lx - x' 3). (21)

Formally,

EVu(x)J2  rnm y12 Elu(x + y) - u(x)32 -V y- J_ - 1  (22)

where we have used the two-thirds law and concerned ourselves with the regularity of u at
the level of the viscous length scale. It can then be seen that

v j EJVu12dx 0(1).

Alternatively, since (6) is valid for all v > 0, we have that lim,-0 Q]-v .f EIVu1 2dx = E.
Even in the inviscid limit energy is still removed by loss of regularity of solutions to Euler's
equation!

1.2 Anomalous Dissipation in Burgers' Equation

In our discussion to present we have made several significant assumptions, such as that of
the existence of a unique steady state solution to 3D Navier-Stokes with random forcing
(which is in fact a reasonable assumption, see [1]). While Onsager's conjecture is somewhat
speculative for the 3D or 2D Navier-Stokes and Euler equations, it is realizable and easily
illustrated within the framework of Burgers' equation with forcing and periodic boundary
conditions:

Ut - V71") sin(27rx), x c [0, 1]. (23)
2 2

For 1/ > 0, (23) admits smooth solutions with "shock layers" of size O(v); however, if
iv 0, solutions develop discontinuities which allow for anomalous dissipation of energy.
In Fourier space, the solution of (23) with v = 0 is

1
71,(X, t) = 1 b,,(t) sin (2nI~v) (24)

'nEZ

where b.(t) imn •t.,(t) 2 f6 u(x, t) sin(2'nurx)dx and satisfies

fI
= 2 "t.t sin(2nIrx)dx

2] [-uux + f(x)] sin(2nIrx)dx (25)

-27),T E bb~- - -'(1n=1 -1,n=- 1 ).
mEEZ

By Parseval's identity and the previous display, the unique steady state solution must satisfy
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Figure 2: Dissipative solution to forced inviscid Burgers' equation.

(t) = d -b I b 2nfrbnbrbn-rn + 7rb1 = 0. (26)
nEZ n,rmEZ

If the sum in the previous display is formally reorganized,

) 2nirbnbrbn- E 2nllb-nbm b-n-rn
n,rnEZ n,mEZ

----- 2nfrbnbmbp

n+m+p=O (27)

1 E 2(n + m +p)wbnbrnbp

n+m+p=O

=0.

We are then led to believe that the system has no steady state solution (with b, • 0). Yet,

it is simple to show that

w(x) = -coszx (28)

is a solution of (23) in the inviscid limit! How can this be?

The answer lies in the fact that w is a weak solution and rearrangement of the sum is

invalid because the coefficients bn do not decay fast enough. In order to compensate for the

lack of a viscous dissipation mechanism, w has lost regularity and developed shocks (see

Figure 2). One has that

8n 2'---- asInI--• o (29)
bn= r(4n2 -l1) 'an

so b~ n-' O(In-). In this case, the energy of the steady state E = -•EZ b < oc and

dissipation is nonzero:
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S2nfrbnbmbn-m = 7rb - 8 < 0. (30)
n,mEZ 3

The above example illustrates that there exist steady state solutions with finite energy
that dissipate through shocks. In the next section, we develop yet simpler models that
exhibit an energy cascade and anomalous dissipation.

2 Simple Models

Consider the following infinite dimensional dynamical system:

{6a, = ,{(n - 1)PaQl - nPa,,+]} + f(t)1Ln=l, n E N (31)

where a E R, p = 0, 1,2 and f(t)1n=l is a time-dependent forcing term on the first mode.
The system (31) describes a linear shell model with nearest-neighbor coupling and (as we
shall see) the feature that it allows for anomalous dissipation. We will focus here on the
case p = 1 with forcing f(t) = V2/E1W'(t) and will speculate on cases with p $ 1. In the
case of white noise forcing--which has the advantage of being uncorrelated with the modes
a--an energy balance relation analogous to (5) can be derived:

(t) = d = a ZE{f(n - 1)Pan an- - nPanan+1 + E (32)
nEN nEN

and we have that anomalous dissipation is possible if

-a1 j E(v - 1)PaVa,,-, - nPa,,a,+,} = aNPEaNaN+l E-- . (33)
N-- oc

n<N

This requires that for steady state solutions

an - n-p/2 as n- (34)

since if an2 scales with any other exponent, solutions will have either zero or infinite dis-
sipation. This is consistent with Onsager's conjecture since steady states of the model
correspond to the most rapidly decaying {a•} which allow for anomalous dissipation! By a
simple scaling argument, one has that steady state solutions must lie on the boundary of
the weighted 12 spaces

1 2,p { {an},l!n :Znp-la, < }, (35)

nEN

with no dissipation in the interior of 12,p and infinite dissipation in the exterior of 12,p (see
Figure 3). The representation formula for the unique steady state with p = 1, to be derived
in a subsequent section, agrees with this picture.
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Figure 3: Spaces 12,p and corresponding rates of dissipation.

2.1 The case p = 1

We now show how to solve the simple model in the case p = 1 with forcing f(t) = V'•W(t).
Some remarks on the case p = 2 wil be made in Section 3.

Consider the set of Laguerre polynomials L,(x) which satisfy

(i) Lo(x) = 1

(ii) (n + 1)Ln+l(x) = (2n + 1 - x)Ln(x) - nLn-I(x), n e N

(iii) xLn(x) = nLn(x) -nLnl(x) (36)

(iv) r Lm(x)Ln(x)e-xdx = 6nm

Let fo = O, fn(z) = L,-1(z) for n E N, and define

g(z,t) - Zan(t)fn(Z). (37)

nEN

Then one has that

•(z,t) it. n(t)fn(z)
nEN

-E al{(n - 1)an-1 - nan+i}fn(z) + V'-YW(t)
nEN (38)

E aan{2zfn(z) -+ (1 - z)f(z)) I x/+VEW(t)

nGN

2- z 09g (z,t) + a(1 - z)g(z,t) + VEW(t)
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by shifting indices and by properties (36) of the Laguerre polynomials. Solving the stochastic
partial differential equation in the previous display, one can use the orthonormality of
{fn(z)})EN to find a,: 00

a,(t) = j g(z, t)fn(z)e-zdz. (39)

Furthermore,

E (t) = Ea 0/ 1Eg2(Zt)ezdz
ncN (40)

(t(.) = Yý E,116,71= Eg (z, t)ý (z, t) e-'dz

hcN

where equality follows from Parseval's identity. Note that from (38) one can also derive the
conservation form

I(g. -z) .q. -z

= 2 [2az~ + a(1 - z)g ±+ v2l] eC- (41)

= (Zg -2) + 2EWg&2 .

We are now equipped with the tools neccssary to determine properties of explicitly deter-
mined solutions.

2.2 Representation Formulas for the Steady State and IVP

We now derive the steady state solution of (31) for p = I with white-noise forcing and
examine the initial value problem (IVP) without forcing. To simplify discussion, take a = 1.
Solving (38) with initial conditions go(z) "- g(z,O) = ENE. an(O)fn(z), one has that

g(Z, t) eCH +0 C-K 2 1)(2t) + V2E (-•-)dW(s) . (42)

The explicit representation for the unique statistical steady state solution is then

a,(t) = v2-E dW(s) ] dzL, 1 (z)e[t-s-5(e s-+±)] (43)

so a•(t) is a Gaussian field with mean 0 and covariance

E(an(t)a,, (t)) 2E ds dzl dz 2 L 1-i (z 1 )L,,-_ (z2)e2 [2, 2

/02 (44)
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In particular,

-rlim E {(n- 1)E(anan-1) - nE(anan+l)} = lim NEaNaN+1 --
N-oo N-oo

n<N

and we have anomalous dissipation.
A simple consequence of the conservation form (41) is that energy is conserved if one

begins with finite energy:

ZEa 2(0) < oo implies ElEa2n(t) = ZEa2n(0) for t > 0. (45)
nEN nEN nEN

There also exist dissipative solutions with ZnEN ]Ean( = oo; that is, solutions such that

Elani > Cn-1/ 2 as n -- oo. (46)

Finally, as we have shown above, with forcing there exists a unique statistical steady state
with equilibrium distribution supported on the the most regular dissipative solutions, i.e.,
such that

E2an = 0(n- 1) as n --+ oo.

3 PDE Approximation to Simple Models

When scaled properly, the system (31) very closely resembles a finite difference scheme for
the wave equation ut = cu.. Keeping this in mind, for a > 0 one can find PDEs whose
solutions mimic those of the simple model for the IVP.

We begin by setting a = 1 and by recalling that with no forcing,

6, = (n - 1)Pa,-l - nPan+1.

Let an(t) = A(nh, th-p+1) and send h - 0 with nh --4 x and th-P+I -- r to obtain

-r= -pxP-PA- 2xp A. (47)

The previous equation can also be written in the conservation form

1A 2 _ 2 (xPA2)" (48)

2 -r O9x

Thus, one has

A 2 A2(x,T)dx= -LPA 2 (Lr) 74 0 if A 2(L,r) > CL-p (49)
2 dr J L--oo

which is exactly the phenomenon of anomalous dissipation!
Now consider the characteristic equation and solution of (47):

dX - -2XP, X(o) = x (50)

d-
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A(x,T) = Ao(X(T))exp (-p j0oXhp-(T')dT'). (51)

3.1 The case p 1

If p = 1, then X(T) = x -27 and there is no anomalous dissipation if fo Am(x)dx < co
since energy is conserved:

j A 2 (X, T)dx j Ag(xXT)C-edx. j A2(r)dm7. (52)

Anomalous dissipation only occurs in this case if A2(x) > Cx-a as x - c, and in particular,
A2 (x, T) = Cx- 1 if A2(X) = CX-1.

3.2 The case p = 2

If p = 2, then X(T) - and anomalous dissipation occurs even if fo A2(x)dx < cc
since

d 1--2rTX (1 + 2.x7) 2

f1/2 A2(T7)dl 
(53)

-Jo
0A< A(71)d,1.

Notice also that

A (3,,T) Ag (0 ±~X 1± )2 A(1/2T)(2XT) - 2  as x: -oc (54)G + 2T) (I ++2rx

so that one has anomalous dissipation for T > _,, where

T, = min{T : A2(1/2T) $ 0}. (55)

3.3 Properties of the Solutions

It can easily be seen that the approximating PDE is consistent with the simple model

for p = 1 since the aforementioned properties exactly mirror those given in the previous
section. We can speculate that this is true for all other values of p as well. Moreover, since

the behavior of the characteristics completely determine the properties of the IVP solution,

by (50) one has that solutions with p < 1 behave like the p = 1 solution, and solutions with
p > 2 behave like the p = 2 solution with regards to anomalous dissipation.

There is an interesting analog between solutions of the approximating PDE for p = 2

and p = 1 and those of the 3D and 2D Euler equations, respectively. As discussed in [3],
solutions of 3D Euler with finite energy are expected to dissipate, as in the case p = 2.

In contrast, it has been proved [4] that solutions to 2D Euler (in which the enstrophy
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Figure 4: Characteristics of the approximating PDE for (a) p = 1 and (b) p = 2.

I W1I2 = IV x u12 , rather than the energy, cascades to small scales) conserve enstrophy
whenever the enstrophy itself is finite, just as in the case p = 1! Furthermore, if we define the

"turnover time" T(k) in the context of 3D Euler as the only time scale which can be derived
from the wavenumber magnitude k = Ikl and energy flux E (equivalently, the enstrophy flux
E in 2D Euler), dimensional analysis gives that

-r((k) = CE-1 1 3 k-2/ 3 (3D Euler), f(k) = Cg-2/3 (2D Euler). (56)

Since the turnover time describes the time required for energy (enstrophy) to pass through
wavenumbers of magnitude k and /i(k) = ln(k) is the natural scale-invariant measure as-

sociated with k, the total time for energy (enstrophy) to move from k = 1/Lf to k = 0o
is

j r(k)dp(k) < oo (3D Euler), j f(k)dp(k) = oo (2D Euler). (57)

Analogously, characteristic lines in the case p = 2 go to infinity in finite time, while those
for p = 1 go to infinity in infinite time (see Figure 4)!

It is worth noting that in the derivation of the PDE (47) we have made some smoothness
assumptions on solutions of the IVP in the simple model. These assumptions can be justified
if a > 0 but are quite wrong if a < 0. To see this, let a = -1 and consider the IVP

an(O) L1I=1 for p = 0. Then for 0 < t <K 1 one has that an > am for n < m, and so

an(t) - -an-,(t) for n E N, with ao = 0.

This implies that for small values of t,

an (t) -_ (U-1)n-itn.

The solution of the IVP is thus initially highly oscillatory and cannot be approximated by
a smooth function in any strong sense.
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Vibrating pendulum and stratified fluids

Inga Koszalka

1 Abstract

The problem posed is the stabilization of the inverted state of a simple pendulum induced
by high-frequency vertical oscillations of the pivot point. The stability conditions are de-
rived by means of the multiscale perturbation leading to the averaged dynamics as well as
by linearization. Then the concept and methods are applied to the study of an incompress-
ible, inviscid, stratified fluid under the Boussinesq approximation. The mechanism of the
stabilization of the fluid system was found to be analogous to that of pendulum provided
that the density disturbance has the form of a wave or the sum of waves. However, the
analogy in case of a general density disturbance is not obvious.

2 Introduction

A simple pendulum has only one stable state, the straight-down position. However, if
its support vibrates in the vertical or, equivalently, when the gravity is modulated at a
frequency much greater than the natural frequency of the pendulum, then it is also possible
for the inverted (upside-down) position to be a stable state. The problem dates back to
1908 when Stephenson showed that it is indeed possible to stabilize an inverted pendulum
by subjecting the pivot to small vertical oscillations of suitably high frequency ([17], [18],
[19]). However, it was the work of Piotr Kapitza ([10]) that drew broader attention and

commenced a series of studies concerned with this interesting phenomenon, called sometimes
for that reason "Kapitza pendulum". Similar behavior of parametrically forced systems in
this parameter regime was found in other problems, like particle trapping and even evolution
of market prices (e.g see [6], [7]).

The purpose of this work is to investigate the stabilization of the inverted pendulum and
to apply the concept and the methods developed to fluid dynamics. The pendulum system
is treated by means of the multiscale perturbation which leads to the averaged dynamics,
as well as by linearization, which reduces the problem to Mathieu equation. As a simple
fluid analog we choose incompressible, stratified fluid under the Boussinesq approximation
in periodic domain, subjected to a rapidly varying gravitational field. We focus on the
multiscale technique and averaged dynamics to find the stabilization mechanism equivalent
to that obtained for the Kapitza pendulum.
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Figure 1: Kapitza pendulum.

3 Vibrating inverted pendulum

3.1 Problem formulation. Equation of motion

We consider a simple, nonlinear pendulum of mass m, and length 1, moving on a vertical
plane in the uniform gravitational field and subjected to a vertical, rapid vibration of the
pivot point. By rapid vibration we mean oscillation of high frequency and small amplitude
of the pivot motion, given a form:

((t) = a cos(-yt). (1)

The parameters of the external forcing, the amplitude of the vertical motion and the fre-
quency, obey

a, - 0(e), 0 (±)

where c is a small number. Following the classical work of [11], we choose the coordinate
system depicted in figure 1 and the following transformation:

x = I sin 0

y = I cos 0 + a cos(-yt), (2)

where 0 E ]R/27rZ is the angle that the pendulumn forms with the downward vertical. From
the Lagrangian of the system (for the derivation, see Appendix A), we obtain the equation
of motion of the vibrationally forced pendulum:

m?,1,2 0 + rg.o sin 0 + mat/Y2 cos(7yt) sin l = 0, (3)

where go is the gravitational constant. It is worth noting that by a simple rearrengement
leading to:

+ (go - a'_Y2 cos(Yt)) sin 0 = 0,

we can regard the system of the pendulum with the vertically oscillating support as a
immotile pendulum in the field of a modulated, rapidly varying modified gravity of the
form:

1 (t
.g = go + -g-1 (•)

26
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Defing the natural frequency w, of the pendulum by wo =, we get a more concise form
of the equation of motion:

4+ (w, + aY cos(Yt)) sin =0. (4)

It is more convenient to operate with non-dimensional parameters. Without the loss of

generality, we let w2 = 1 and divide (4) by it. The nondimensional time is set to be t* = wot.

We define the ratio of forcing and natural frequencies Q, and the relative amplitude of the
forcing /3 as, respectively: a

Q=- W, -, Ol=1,
w-o

where Q -0 (1) and/3 ' O(E). Dropping asterics, the equation of motion of the so-called
"normalized pendulum" becomes:

¢+ (1 + 3Q2• cos(f t)) sin ¢=0. (5)

This is a nonlinear equation with periodic coefficients, and is nonintegrable. Note that it

describes a forced motion in a uniform field of gravitational potential Uo:

a20 0U - /3_ 2 cos(Q t) sin 4, where U, = - cos ¢ (6)
Or2 0¢

The stability properties of this system have been studied either by means of averaging (e.g.
[10], [11]), i.e. effective potential method, or by linearization around fixed points which

leads to Mathieu equation (e. g. [18], [8]). The information obtained by neither of the

two approaches is complete, however it is in some sense complementary; therefore we found
worthwile to apply both of them. We obtain the averaged dynamics by an alternative tech-
nique, the multiscale perturbation, and then zoom into the neighborhood of the equilibra

by means of linearization.

3.2 , problem and multiscale perturbation

We note that there are two well separated time scales in our problem, corresponding to

the slow motion of the pendulum and fast oscillation of the pivot point. We can therefore
attempt to find an asymptotic solution valid on long time scales of the pendulum motion.
We will define a perturbation parameter and its relation with the forcing parameters by:

1 a (7)E=-, IEH<<1, /3=-=/ 7

The independent time scales in our problem are:

slow time: t, t - 0(1)
t (1)

fast time: =-, T 1),

and so the equation of motion (4) can be expressed as:

+ + (1+ cos -T) sin 4=0. (8)
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The first and the second time derivatives become, respectively:

d 0 1 0 d2  02 2 02 1 025t- +___ + +6 +
dt at c a7' dt2  at2  

EOt 22"
Expanding the variable 0 in power series of c yields:

0(t, T) = (o(t, T) + C (t, 7) + c2 
2 (t, 7) + .. . (9)

Inserting the perturbation series (9) into (8) and assembling powers of E yields a set of
equations for the subsequent orders in E. Manipulation of these equations results in a group
of terms that give unbounded, linear growth of the solution in fast time T which obviously
destroys the solution on long time scales. Such terms are called secular terms and a standard
procedure in multiscale perturbation technique is to remove them by making them equal to
zero and vanish ([9]). For the justification and more detailed treatment of the problem, see
Appendix B. The condition for the solution to be valid uniformly on t gives the equation of
motion of the leading order quantity:

-(1 + 2 cos 0.)sin 0 . (10)at2 2

It is worth to note that the same result would be obtained if the average of the 0(1)
equation over the fast time has been taken, defined as following:

<< T << 1, V)(t) =- T fT V)(t,rT') dr', (11)

(see Appendix B). Using the fact that cos 2 
T -, we get:

a2 0 (/3Q) 2 co- si 50 2- (1 + ( )2 cos )sin . (12)at 2 - 2-
Therefore, we can consider (10), governing the dynamics of the 0(1) quantity, to be equiv-
alent to the dynamics of a variable averaged over the fast oscillations (12).

3.3 Averaged dynamics. Effective potential.

We can note the averaged dynamics of the vibrationally forced pendulum governed by (12),
can be perceived as a motion in the field of effective potential U:

02 au - /32Q2 2
S_- 0s where U = -cos+-+ - -sin 9. (13)

Interestingly, there is no explicit time dependence in the governing equation, as the effective
potential is dependent only on the mean state of the system and parameters of the forcing
(compare with (6)). This observation allows for the following physical explanation of the
process, given by [10]. Vibrational gravitational field (induced by the oscillatory motion of
the pivot) leads to the production the vibrational torgue which on average manifests as an
ordinary force. This force tends to set the rod of the pendulum in the direction of the axis of
the oscillations. Provided the vibrational force is balanced by the gravity, the inverted state
exhibits the dynamical equilibrum and becomes stable. We can now express the stability
condition for the upper equilibrumn in terms of the parameters of the forced system. Let's
take a closer look into the stability of the system.
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unforced pendulum vertically forced pendulum
0

0.2-1

-2 -2

-0.2

-4 -0.4
0 1.57 3.14 4.71 6.28 0 1.57 3.14 4.71 6.280 0

Figure 2: Left: Potential as a function of 0 for the unforced, nonlinear pendulum. Right:

effective potential for vibrationally forced pendulum. Note that scales of the two figures are
set different show the shape of the functions.

3.4 Stability of equilibria of averaged dynamics

The stability of equilibra can be most easily determined from (13). By setting the right
hand side to zero, we find positions of equilbra, i.e the extrema of U. There are four such
points, in contrary to the case of the unforced nonlinear pendulum, when there are only two
(fig. 2). The nature of the extremum is determined by the sign of the second derivative of

U, 92U < 0 indicates maximum (i.e. an unstable equilibrium), 921 > 0, minimum (a stable
equilibrum called a potential well):

Equilibrum Stability

q5 =0 (noninverted) stable

= arccos(- (3ý-)2) unstable

3 arccos(- (/3)-) unstable

40 = 7r (inverted) conditionally stable
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Figure 3: Time series and phase plots of the stabilized inverted pendulum. Blue color
indicates the nonaveraged and red - averaged dynamics. Left: stable configuration Q
11, /3 0.2. Right: unstable configuration (rotational mode) • = 11, = 0.1. Note that

the scales of the phase space plots are set different to show the shape of trajectories.

0.5 0.5

0

-0.5 -0"5

-1 -0.5 0 0.5 1 -1 05 0 05

Figure 4: Time trace of the vibrationally forced pendulum in physical space. Left,: stable

configuration Q = 11, /3 = 0.2. Right: unstable configuration Q = 11, 0 = 0.1.
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From (13), the condition for the stable upper equalibrum 0* is:

____ > 1. (14)

2

The stability of the inverted position depends solely on the parameters of the system and
requires a forcing of suitably high frequency. Note also that an angle *, 3 = arccos(- (,9)2)

can be interpreted as a width of the potential well, namely maximum initial displacement
that allows for the stabilization of the upper equilibrum for given properties of the forcing.
Exemplary time series and phaseplots of the pendulum in a stable and unstable regime
is presented on figure 3, for both nonaveraged and averaged dynamics. Corresponding
behavior of the pendulum in the physical space is shown in figure 4.

There is another point of view of the averaged dynamics. The problem of the invert-
ible pendulum may be considered in the 1½-degree-of-freedom Hamiltonian setting. The
nonlinear dynamics is then described by the Poicar6 map or equivalently by its integrable

approximation, a planar Hamiltonian, obtained from the normal form theory: successive
transformations leading to the removal of the explicit time dependence. As the effective
potential corresponds to the potential energy, the planar Hamiltonian is equal to the total
energy of the averaged system. In this framework, by defining a parameter A the
transition of the inverted equilibrum from a minimum for A < 1 to a saddle point for A > 1
may be considered a subcritical Hamiltonian pitchfork bifurcation ([5]), see figure 5.

2-

1

-2ý
0 0.5 1 1.5 2

Figure 5: Bifurcation diagram in the (A, O*) - plane for the inverted pendulum, where
A= 2 and 0* is a fixed point. Green dots indicate instability, magenta dots - stability.

3.5 Mathieu equation

Another approach to the study of the inverted pendulum is the linearization of the dynamics
near an equilibrum. We define a = and look again into the dynamics of (5), but now as
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evolving in the fast time T == yt:

0,, + (a +/cosT) sin¢ = 0. (15)

Now we zoom into the dynamics near 7r, so it is convenient to define the complementary
angular displacement ýo with respect to 0, o = 7r - 0. This is the angular displacement
from the upper equilibrum position. Then sin p = sin(w - = + sin 0 and w = OTT.

The governing equation becomes:

ý-r7 - (o'+ 3cosT) sin = 0. (16)

The sign of 0 is not important as it corresponds to the instantenous amplitude of the pivot
motion around the center of the coordinate system, which can be postive or negative. The
sign of a, however, matters. We define the variable V) as

f : angular displacement near the lower equilibrum

: angular displacement near the upper equilibrum

and linearize sin V/ - 0, obtaining the canonical form of Mathieu equation:

o + (0 + /COS = 0. (17)
a72 ±a(cs),O

Thus equation (17) describes linearized dynamics around the either fixed point, depending
on the sign of 0o:

oa > 0 : lower equilibruim o < 0 : upper equilibrum (18)

This specific formulation allows the investigation of the linear stability near the either
equilibrum based on the general results for the Mathieu equation. It is also a manifestation
of the fact that we can tackle the stability of the inverted state by changing the sign of
the gravity g. The stability of the periodic solutions of the Mathieu equation, given by the

Floquet theory, can be determined from the diagram in (0, a) - parameter space ([9]). The
so-called transition curves separate regions of values a and 0 corresponding to unstable and
stable solutions. Kapitza pendulum regime, with high forcing frequency (small ca) and small
amplitude of the pivot motion (small 3) lies in the region marked by the red circle in fig (6).
The most surprising is the fact that, contrary to the averaged dynamics, linearized approach
gives the possibility for destabilization of the lower equilibrum! We can obtain quite exact
values for the parameter regions corresponding to stable inverted and noninverted equilibra:

Equilibrum Stability condition

inverted < < < 0.45 +

noninverted 0 <K < 0.45 .
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It is worth noting, that the linear stability condition for inverted pendulum based on lin-
earization was generalized to an inverted N-pendulum and proven by [1]. In that case the
system can be reduces to N uncoupled Mathieu equations and the stabilty condition yields

--Fg < < 0 g (19)
Ywmin Wa2x 

9

where Wmin and Wmax are the lowest and the highest of the natural frequencies of any single
pendulum member of the full configuration.

6

4
0 .5 .... . . .. . . ...... ........ .......... ..... . . .

... .. .... .. . ... .

-0.5

-4

-60 2 4 0 0.2 0.4 0.6 0.8 1

Figure 6: Left: Stability diagram for Mathieu equation. Right: the Kapitza pendulum
regime.

3.6 Averaged dynamics vs Mathieu equation

Both approaches to the study of the dynamics of the pendulum system under the influence
of a rapidly oscillating forcing are not completely adequate, i.e the relevance of either of
them is limited. Here we summarize the key points concerning the applicability of the two
methods.

Averaged dynamics:

"* approximates long time asymptotic behavior,

"* concerns global dynamics, i.e arbitrary displacements from the equilibrum position.
Hence, apart from the very proximity of the inverted state, allows the study of the
rotating state of the pendulum,

"* gives only lower stability bound in the parameter space for the inverted equilibrium,

"* gives the maximum angular displacement that permit stabilization of the inverted
state for a given set of parameter values,
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"* predicts the stability of the lower equilibrum for all the values of the parameters,

"* gives physical explanation for the dynamical stabilization phenomenon in terms of the
effective potential.

Certainly some subtle details in the pendulum dynamics are lost in the approximate average
analysis, which refers only to the slow component of the motion. In this method one
introduces an approximation with no control on the relevance of the discarded dynamics,
except of the estimate of their magnitude in terms of (. There is always a region in parameter
space where the averaging fails predicting unstable configuration - the region over the upper
bound in case of the inverted state and the whole unstable region for the lower equilibrum,
which can be found from the Mathieu equation.

Linearized theory:

"* reduces the problem to the well-known Mathieu equation,

" applies only to the vicinity of the fixed points, i.e is valid only for small angular
displacements from the equilibrum position,

" gives more precisely defined stability regions: lower and upper bounds on the param-
eter values,

"* admits the possibility for destabilization of the lower equilibrum and gives the range
of parameter values for which it should be observed,

"* does not, provide with any \physical explanation of the phenomenon.

In general, the applicability of the Mathieu equation is limited as in general the linear
stability cannot be extended immediately to the full system. However, it gives correct
results for the zoomed view into the dynamics near the equilibra.

4 Kapitza pendulum in fluid systems

4.1 Kapitza pendulum vs fluid systems

As already mentioned, we can regard a pendulum with a vertically oscillating support as
equivalent to a pendulum with a stationary support in a periodically varying gravity field.
This observation allows to attempt at finding an analogy between the Kapitza pendulum
and fluid systems acted upon by vibrating gravitational forces, and thus study the dynamics
of the latter by methods developed in the preceding sections. A similar analogy was already
mentioned by Lord Rayleigh ([15]), who considered a phenomenon observed in the famous
Faraday experiment: a surface wave instability in a vertically vibrated container filled with
fluid, with the frequency close to resonance with the natural frequency of the system.
From that time on the problem has been studied widely both analytically (e.g. [2], [12],
[13]) and experimentally (e.g. [4]). The "Kapitza regime" discussed here is different as
the forcing frequency is much higher then the natural one and it would not be trivial to
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think of an experiment similar to that of Faraday. One can rather search for an idealized
physical situation. We have chosen a simple fluid system described by Boussinesq equations,
characterized by density stratification and related buoyancy force, which action, combined
with that of gravity, provides the mechanism for inertial oscillations with bounded natural

frequency.

4.2 Boussinesq equations. Problem formulation

We will study the dynamics of a incompressible, inviscid, stratified, hydrostatic, non-

rotating fluid, governed by nonlinear Boussinesq equations (the momentum equations, con-
tinuity and conservation of density), see e.g. [16]):

Du l0p
=+ -0 (20)Dt 9f x

Dw 10)p gp (21)
Dt - o~z Tf

O9u Ow
0 + -z =-0 (22)

DpDt -0 (23)

Here t is time and u and w are the components of the nondivergent velocity field in horizon-
tal (x) and vertical (z) directions in a Cartesian frame of reference. The positive z-direction
is antiparallel to gravity. We will work in the (x, z) - plane, which implies that all charac-
teristics of the system are uniform in y.

We consider a hydrostically balanced reference state upon which perturbations are to be

imposed and make use of the Boussinesq approximation, which means that the density field,
represented by p(x,z,t) = -po(z) + Ap(x,z,t) = •(1- S( +)) +Ap(x,z,t), satisfies > >
po(z) >> Ap. The mean fluid density - is a uniform costant. The density stratification is

assumed to be linear and S is a stability parameter defined as:

{ + 1 stable stratification

-1 unstable stratification

The vertical extent of the domain is small compared to a density depth scale H - d•o -1
~dz

Pressure field p is assumed to be hydrostatically related. The joint effect of gravity and

density stratification leads to a buoyancy force b in the vertical. The natural frequency of
the system, so-called the Brunt-Vdisdld frequency, is defined through N 2 (z) = --gd ,

which is constant in case of linear stratification, and with notation used here N 2 -. We

will constraint us to the flows with periodic boundary conditions.
Nondivergence of the velocity field allows to introduce a stream function 0, such that

u = 0z and w = -¢,. In an infinite medium the Boussinesq equations are satisfied by
planar internal waves of the form V = T cos(kx + mz) e-iot (with horizontal and vertical

wave numbers k and m and , = k2 + m 2 ), which obey the dispersion relation w = +-N-L *
In polar coordinates chosen so that k = r cos a and m = r, sin a we have w = ±N cos a. The
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frequency is therefore a function of the angle that the wave vector makes with the vertical.
The condition for progressive waves is therefore 0 < w < N so N acts as the upper bound
of internal wave frequencies, corresponding to entirely vertical flow (buoyancy oscillation)
([3]).

Now we will embed the system in a modified gravity field, varying in vertical as g(t) =

go + a-y2 cos(-yt), where go is a gravitational costant, the amplitude of oscillatory motion
satisfies a << go, and the frequency of the oscillations -y is much higher then the Brunt-
Vhisiilh frequency, that is -y >> N.

We will nondimensionalize the system as follows:

(x* z) M= (H: -i, H *

which results in the nondimensional components of the velocity:

The nondimensional density and pressure fields are:

p*(. z, t) (I - )+ Ap*(x z, t), where Ap* = LP, and p* -P

pH T pgoH'

which gives the nondimensional Brunt-VWisMil. frequency N*2 = S. By introducing the
nondimensional parameters: 7 a

ý (3 H'
go

the ratio of the forcing and natural frequencies and the relative magnitude of the forcing,
respectively, we get

.*(t) = g(t) = 1 + OQ2 cos(Qt*). (24)
9o

By dropping asterics, the nondimensional Boussinesq equations are:

Du+ O= 0 (25)

Dt OD

Du D Ow
-I+--9 = 0 (27)
Ox D9ZDoAp Dz~p Dp

-- + U-A + U) DA - WS = 0 (28)

We can eliminate the pressure by focusing on the vorticity equation, which is:

Dq _ D au --Ow DAp (1 + /3OQ2 cos(Qt)). (29)
Dt Dt Oz Ox ax

It is evident that the vibrating gravity field modifies the basic mechanism of the baro-
clinic generation of vorticity. We will now investigate this phenomenon in detail, using the
methods derived for the stabilized inverted pendulum.
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4.3 Multiscale expansion

We can observe that, similarly to the case of the Kapitza pendulum discussed above, in our

Boussinesq problem we have two well separated time scales: the slow gravity oscillations
and the fast oscillation of the gravity field. Thus, an attempt to find an asymptotic solution
valid on long time scales is justified. Analogously as for the pendulum, we can define a
perturbation parameter by c = 1, and we have -" O(E). The slow time is then t - 0(1),
and the fast time r = Qt, -r - 0(1), compare with (7). The oscillating gravity field (24)

can be expressed as g(t) = 1 + 1,-1(F). Unlike in the pendulum case, system variables
depend now not only on time, but also on space, therefore we have for the first, the second
and material time derivatives, respectively:

a a 1 09 02 02 2 02 1 02 D a a 9€OT'~~ 1t • "4 - =- + +- Jr -

at at2  at2  Ofat 2 C 2 Dt Ot Ox az

With the averaging operator defined as (11), the components of the velocity perturbation
are expanded in perturbation series as:

u(x, Z, t, r) = W(x, z, t) + U'(X, z, t, r) + (300 7 (30)

w(x,z,t,,-T) = W(x,zt) + w(X, Z +tT) +

where (U,-, W7-) refer to the mean perturbation velocity, while (uN, w') correspond to the
disturbance due to modified acceleration of the order 0(1); after time integration, we can

expect them to be of the order 0(1), but as they came from the oscillatory motion, they will
vanish when averaged over the fast time. We will define the mean substantial derivative:

DU 0 0 _0

Dt - t+1°9+ - z"

The density perturbation is expanded in c as:

Ap(x,z,t, T) = ApO(X,z,t,T) + EAApI(x,z,t,) + ... . (31)

Inserting the series (31) and (30) into the density equation (28), we get:

OAp 0  1 aApo OApl + aAp OApo , aAPo OAp1  , _Ap+

atfaF at aTF ax 19X ax a0xat a • +•-7 + -- _-r+_g -o +u -x+u-~

OApo , OAPo OApl , ___Ap_ -W = (32)
+w- -w0-- --7--S-=0,

Gathering terms of the order 0(1) we conclude that Apo = Ap0 (Xz,t). In the order
of 0(1), we will first average out the terms containing perturbation quantities Apa and
(Uo, w'), so that the remaining terms give an evolution equation for the mean density
perurbation:

Dt TpgS =O0. (33)
Dt

Subtraction of (33) from (32) results in an evolution equation for Apl :

aAp+ U, +AP , Ap WS = 0. (34)
a-7+U°9 ax +-+0 az-
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Inserting the perturbation series (30) into (29), we get:

a , 97 - a -7o, 1 a (Ou", +w ) 9 O , 01 o - -. o a T, a 17 - 0-•o,
t(~)+7 a, +)+ ( a-)+

+ 0 a u a w O 'o , ao a,& ' o • " O V ,o O - Ia a v o O -Wp • O p+U7o- , - ý0) +0)-(- O +U - -0 + -

"Ua (au1o - 4wo' ) O +O9(u. wL) =DAPO 1-(T p + 1(-)dAp1  OAsp,
,5xOz Ox ±w-OZ j aAz Ox_ _Cx a

Terms of the order O(1) gather in the evolution equation for q':
aq1o a Du" O'I') A0 (o

r - (' - 0 ) =-1( • •T) (35)
aT aT aZ axO

By applying the averaging operation to the 0(1) ensamble, terms containing products of

the leading order and prime quantities are eliminated and the evolution equation for the

mean perturbation vorticity follows:
Dq_ OAp +OAp] _ -( , + q° Oq', (36)

Dt Ox 0a1)) (9 O6z

We will use the fact that averaging is a linear operator so that from the continuity equation

(28) to obtain:

a 0 +--7 = 0, and -04 + Oz -0. (37)
Ox' az 49 a Oza

To summarize, we have arrive at two separated sets of equations with no explicit time

dependence: for averaged perturbation variables and those generated by the forcing of our
system. By analogy to the Kapitza pendulum, a stable stratification corresponds to the

stable equilibrium of the pendulun, while the unstable stratification - to the inverted state.

Now we will analyze the response of the system to the instantenous density disturbance to
determine how the vertical oscillations of the gravity field influence stability properties of

the system as a whole.

4.4 Stability of the vibrating Boussinesq system

4.4.1 Monochromatic wave disturbance in x direction

We will start with a perturlation of the mean state of the form:

Ap = po cos(kx). (38)

Assuming a perturbation streamfunction of the form VV = V cos(kx), from (35) we have

0 and w 0 =o(x) f . _(T')dT'. Therefore in the (35), the advection terms

cancel out yielding dP = S'u,' and they vanish in the equations for the evolution of the
mean density perturbation (33) the mean vorticity perturbation (36) to give:

D( aN S um) 2  DApoD-i =A (1 + ), -= 0 (39)
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Manipulation of these expresions yields the evolution equation for the mean density pertur-
bation:

- - Ap=O, where S=S 32- 2  (40)
2 '

is the new modified nondimensional frequency, expressed by means of the stability parameter
(note that S 2 = 1 irrespective of the initial stability). Thus we conclude that in case of
a stable initial stratification (S = 1), the stability is augmented, while in case of unstable
initial stratification there is a stabilizing effect of the vertically oscillating gravity field. The
stability condition in the initially unstable case is:

3 2 Q - 2 > ,( 4 1 )

2 >1

which is identical to the analogous condition for the inverted Kapitza pendulum (14). In
fact, the equation (40) itself may be perceived as a linear analog of (12) - unintentionally
linearized by the dynamics itself. We can thus expect all the results obtained from the
Mathieu equation for the inverted pendulum to be valid in the problem discussed here.

Assuming the plane wave solution of the form V) = ?/o cos(kx - wt), we obtain the
dispersion relation for the internal waves supported by our system:

2 = S2

which is equivalent to the dispersion relation of the buoyancy oscillation typical to the
unforced Boussinesq system, with N replaced by S*, i.e. the system is stabilized and the
frequency of the vertical oscillation is higher then the maximum frequency in the unforced
case.

4.4.2 Monochromatic plane wave disturbance

In case the initial density perturbation has a form of the planar wave:

Ap = po cos(kx + mz), (42)

the procedure is conducted analogously as in the previous case. Although uo 0 0, from
the continuity equation (37) we have -2O = u' leading to the

ax az Wo- = 0 AY
cancellation of the advection terms. Consequently, the multiscale technique and averaging

leads to the following stability condition for the averaged system:

D2 a2 E2 __+ k2 ,=2 Q2

t(-+-) 2 )A S(-- 2 )Ap=O, where =S-(k2_ ) 2

As before, we conclude that in case of a stable initial stratification the stability is ampli-
fied, while in case of the unstable initial stratification, the vibrating gravity results in the
stabilizing effect whenever:

(k2 + M2) o 2 , (43)
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which is equivalent to (41), except that now the orientation of the perturbation in space
(i.e. (- k2)), matters. The dispersion relation in this case is:

k2
w2 = S2, k2  (44)

* 2+ M,2

Again, the form of the dispersion relation is equivalent to the dispersion relation of the
internal gravity wave solutions to the unforced case, with N replaced by S*. The effect
of the vibrational gravity forcing depends not only on the values of the parameters of the
forcing, but also on the angle of the wavevector k: for a given forcing properties, vertical
disturbances are more difficult to suppress.

4.4.3 Perturbation of an arbitrary form

If we allow the instantenous density disturbance to have an arbitrary form Ap(x, z), the
advective terms in (33, 34) and (36) do not cancel out and the mean vorticity equation
takes a form of an integro-differential equation:

-D-• 9Ap ,OAp,
Dt - + V 9-1) -J(•',V 2 •!). (45)

Without further assumptions, it is difficult to construct any meaningful stability condition.
However, if we could represent Ap in Fourier series and linearize in u', wo and Ap, we can
get rid of the advective terms and obtain the following form of the mean vorticity equation:

D - \( AP + (kI 2+ ) , (46)

which shows the additive effect of any single perturbation wave component of the series to
the baroclinic generation of the mean vorticity, modified by the vibrating gravity in similar
way as in the previous simpler cases. The corresponding stability condition for an unstable
initial stratification is:

2 2_2 >k +1, (47)

so again we can see that provided the instantenous density perturbation can be given a form
of the sum of waves, there is an analogy between the effect of the vibrational forcing on the
stability of the system in case of the Kapitza pendulum and dynamics of a fluid described
by ideal Boussinesq equations, with a modification due to nonlocality of the problem: for a
given values of forcing parameters the stability is strongly affected by the direction of the
propagation of the density disturbance.

5 Summary and conclusions

In this work we considered the inverted pendulum with the vibrating support. The applica-
tion of multiscale perturb)ation, leading to the averaged dynamics, as well as linearization,
allowed us to study the stabilization phenomenon. Then we used the multiscale technique
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and averaging to an incompressible, inviscid, linearly stratified, nonlinear Boussinesq system
in a periodic domain, subjected to rapidly oscillating gravity field. We have shown that,
provided the instantenous density perturbation can be given a form of a wave or sum of
waves, the stabilization mechanism induced by the vibrational forcing is analogous to that
exhibited by the Kapitza pendulum. However, the dynamics of the Boussinesq system is
more complicated, as it evolves not only in time, but also in space. The resulting stability
condition for the initially unstable configuration is modified: it requires not only suitably
high frequency and small amplitude of the vibrating motion - the direction of propagation

of the density perturbation in the space also plays a role. In case of a disturbance of a gen-
eral form it is difficult to draw the conclusions about the system stability without further
assumptions.

The work presented here is not just an idealized, educative example that contributes to
the understanding of the instability phenomena. There are indeed real physical situations
that permits the use of Boussinesq approximation with the forcing regime as prescribed
here, though certainly requiring adequate boundary conditions and generally more complex
analysis. As an example, we give convective phenomena in radially pulsating stars, treated
in ([14]) by means of linearization. The appeal of the multiscale perturbation and averaging
methods discussed here is that they provide the description of the global behavior of the
averaged variable, expected to be the one related to any observed quantity. This observation
strongly encourages the application of these methods in any future investigation of the
stability mechanisms in more realistic and complex fluid systems forced parametrically.
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7 Appendix A

In the coordinate system (2), the kinetic energy of the system is expressed as:

T I 77 + _771(1 2 9 + a a2 2 sin 2 (Yt) + 2a'y sin(yt) sin

2al
2 Po~t :5 21777,1l2 +cos(t)cos 0 + 1ma 2 '- sin2 (7t) - d [7al-y sin (-yt) cos(O)],

and the potential is U = -mngoy = -mgol cos 0. The Lagrangian of the system is therefore:

L = T - U = -ml20 + 'ralý 2 cos(*t) cos 0 + mgol cos 6 + d [maly sin(yt) cos(o5) + Iat sin 2 ('yt)].
2 dt2
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The complete time derivative on RHS does not enter the action, so from the Lagrange equation:

d (L' - °L ,
dt 9ý a

we obtain the equation of motion of the vibrationally forced pendulum (3):

m12 b + mgol sin + ± maltY2 cos(-yt) sin q = 0.

8 Appendix B

Inserting the perturbation series (9) into (8) gives:

d20 sin 0, - fol cos O¢c2 ¢2 cos 0o - - sin 0-, cos t cos T -- /,c 5
2 cos T cos kodt2E

A typical initial condition we can think about is the initial displacement from the inverted position
with zero angular velocity:

d~b o 1
0,, = Ao , d I-o + - d 0 It -o = 0. (48)

7-0 dt , =6 dT ~
And the absence of the perturbed quantities (no fast initialization):

q$j It=0-1, dIt o + WI-o = 0, n > 0. (49)
7-0 dt 46 dr-=O

By assembling powers of c one obtains equations for the subsequent orders:

1( 1 a-20

01 0C¢S T•co sin 0,o(t),
O( 2 ): a2 - 92.01n

O(1) 22 aq¢° - 2 -- sin 0, - )301 cOS 7-sqOSq(t).
( T2 -- &t2  -T-t

Let's look at them in detail. The integral of the first of them is:

-1 '92 =0 , 0,= F(t)T+ G(t).

This gives unbounded, linear growth of the solution in fast time T which obviously destroys the
solution on long time scales. Such terms are called secular terms and a standard procedure in
multiscale perturbation technique is to remove them by making them equal to zero and vanish ([9]).
This argument can be justified by using the initial conditions (48), from which we get Fo(t) = 0 and
Go(t) = A,. Therefore, the leading order solution is equal to Ao(t), a function of long time t but a
constant with respect to 7, , = 0,(t). Using analogous argument with the initial conditions (49)
incorporated, we get for the next order term:

0() : 01 = /3(cosT - 1) sin ¢,o(t). (50)

The equation for the order 0(1) becomes:

0(1): 2flsin-cos~oqo(t)+/f 2 cosTsin~ocOSo - -cos 2T sin ocos 0 o--r2 2
9200 sin 0 , - 142 sin 00o(t) cos 0 ,o(t).
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Terms that are constants with respect to the fast time T- are a potential source for a secular growth

in our solution. The condition for the solution to be valid uniformly on t gives the equation of

motion of the leading order quantity (10). Note also that by taking the average defined by (11) of

the equation (50), one gets (12).
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A Search for Baroclinic Structures

Alexander E. Hasha

August 26th, 2005

1 Introduction

The calculation reported in this paper is a standard one for those who study pattern forma-
tion in nonlinear systems. Pattern formation is prevalent when instability breaks symme-
tries present in a basic state. In the canonical example, stationary fluid heated from below
gives way to patterns through Rayleigh-B1nard instability. For a wide class of problems,
one may derive amplitude equations that govern the weakly nonlinear development of an
instability. Amplitude equations describe the slow modulation in space and time of distur-
bances excited near the threshold of an instability. The form of the amplitude equations is
determined generically by symmetries of the governing equations and the structure of the
linear instability ([5], [3]).

When a large, dissipative, system undergoes a Hopf bifurcation, with a trivial steady
state losing stability to a growing, unsteady wave pattern, an amplitude equation that
generically arises is the complex Ginzburg-Landau equation (CCL)

DA 02A 2y--- /A + v,--ff2 - (A JIg.(1
at i' X0 ~ II

The function A = A(x, t) is a complex valued function of two real variables. It represents
the slowly varying amplitude envelope of packets of waves generated by the instability. The
variable x is spatial displacement in a frame moving at the group velocity of the unstable
wavepackets. The coefficients p, v, and ( are complex, with Re {fp} > 0, Re {v} > 0. When
Re {(} > 0, the cubic nonlinearity will balance the linear growth term and halt the growth
of the disturbance when JAI becomes large enough. This case is a supercritical bifurcation.
If Re {(} < 0, the cubic term will never balance the linear growth term and the equation
predicts growth without bound. In such cases, the bifurcation is subcritical and equation
(1) is not a good asymptotic description of the nonlinear dynamics. Higher order terms
must be calculated that balance the exponential growth. Whereas P and V can be predicted
from a knowledge of the linear theory alone, ( and the all important sign of Re {f(} cannot
be predicted without a nonlinear theory, and must be determined case by case by direct
calculation.

To understand the origin of equation (1), consider the situations depicted in figure 6.
When a system is weakly unstable, the unstable modes grow exponentially, but very slowly.
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Most of the stable modes, on the other hand are relatively strongly damped. Because the
stable modes decay rapidly, they are present in the system only to the extent that they
are forced by nonlinear interactions with the unstable modes. Their evolution is slaved to
that of the unstable modes. In many cases, Ginzburg-Landau type amplitude equations
emerge from asymptotic methods that exploit the timescale separation between the stable
and unstable modes.

Equation (1) governs only systems that are sufficiently large in the following sense. The
spatial variations of the unstable wave packets must be produced by the interaction of a
large number of closely spaced unstable modes. In a system of finite size, the spectrum
of available wavenumbers must be discrete to satisfy boundary conditions. The smaller
the system becomes, the larger the separation between neighboring modes in wavenumber

space. If the modes are widely spaced, then a weakly unstable state may consist of only one
or a small number of weakly unstable modes with all others relatively strongly damped, as
shown in figure 6b. The amplitude equations governing such a situation would be a finite
system of real, ordinary differential equations in time for the amplitudes of the unstable
modes [2]. However, if the system is infinitely large, then the wavenumber spectrum is
continuous. In that case, when the system is weakly unstable, a narrow band containing an
infinite number of modes becomes unstable as shown in figure 6a. The nonlinear interaction
of an infinite number of slowly evolving unstable modes leads to amplitude PDEs such as
equation (1), rather than amplitude ODEs. Even when a system is finite, if it is sufficiently
large that weak instability leads to the nonlinear interaction of a large number of closely

spaced unstable modes, then equation (1) is still the appropriate asymptotic description of
the evolution of the instability.

Though the form of equation (1) can be guessed a priori from considerations of sym-
metry [5], one must calculate the equation in detail in order to discover an expression
for (. Knowing the coefficients is useful, and not only because the sign of Re {I} deter-
mines whether the Hopf bifurcation is supereritical or subcritical. Solutions of the complex
Ginzburg-Landau equation exhibit a rich variety of different qualitative behaviors as the
coefficients are varied. In large regions of parameter space, spatiotemporal chaos, inter-
mittency, or the spontaneous formation of coherent structures may be observed. In others
regions, stable, monochromatic plane wave solutions dominate. By computing the coeffi-

cients in terms of physical variables, it is possible to determine which of these behaviors are
characteristic of the real physical system.

In this paper, we derive a complex Ginzburg-Landau equation for baroclinic instability.
Baroclinic instability is important in the study of the atmosphere and oceans. It is the
mechanism that generates weather systems in the midlatitude atmosphere, and it gener-
ates eddies in the oceans that are responsible for a great deal of heat transport from the

equator to the poles. Baroclinic instability occurs when vertical shcar flows driven by hor-
izonta] temperature gradients in a rotating domain become unstable, and large, wavelike
disturbances develop that redistribute temperature fields in a kind of horizontally slanted
convection.

A number of models have been used to study this phenomenon, the most well known of
which are the Charney model and the Eady model. A basic introduction to these models
and others can be found in the textbooks by Pedlosky [9], and Gill [4]. In this analysis, we

use perhaps the simplest model exhibiting baroclinic instability. Introduced by Phillips in
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1954 [10], it consists of a two-layer quasi-geostrophic flow in a rotating channel as shown
in figure 1. Phillips analyzed the linear stability of a shear flow in which the fluid in each
layer moves with a uniform zonal velocity. The basic state differs from that of the standard
Kelvin-Helmholtz instability because rotation forces a slanting of the free surface between
the two layers in order to balance the Coriolis force on the zonal flow. Phillips found that
instability occurs when the difference between the velocities of the two layers exceeds a
critical threshold. The model can easily be modified to include important physical effects,
such as dissipation or a planetary vorticity gradient /3.

The present work is motivated by a series of papers by Pedlosky ([6], [7], and a paper by
Romea [11] that analyzed the nonlinear development of baroclinic instability in the Phillips
model in a number of physically interesting situations. Pedlosky's papers, in particular,
were the first to use multiscale asymptotic methods to compute amplitude equations for
baroclinic instability. In contrast to the present effort, Pedlosky and Romea used periodic
zonal boundary conditions and were therefore investigating the nonlinear interaction of a
discrete spectrum of unstable modes. Consequently, their calculation led to amplitude ODEs
as described above. Periodic boundary conditions are physically motivated for a model of
atmospheric dynamics, because the midlatitude 3-plane is typically conceived as a periodic
strip wrapping around the earth. A typical wavelength for a baroclinic disturbance in the
atmosphere is about 2000 kin, which leaves space for only ten to fifteen wave periods in a
complete traversal of the globe at midlatitudes. Nonetheless, there are physical examples
of baroclinic instability to which the large aspect ratio approximation is applicable. For
example, baroclinic instability produces eddies in ocean currents on the scale of 200 km.
In an ocean measuring several thousand kilometers across, there is plenty of room for large
scale structures to emerge. Our analysis of the large aspect ratio Phillips model should
provide some insight into the kinds of structures one might expect in these situations.

To relate the CGL derived here to preexisting analysis of the qualitative behaviors of
solutions of the CGL, we make use of two studies by Shraiman et al [12] and Chat6 [1].
These papers present a fairly exhaustive numerical study of the parameter space of the one
dimensional CGL. By mapping the coefficients calculated here onto the coefficients used
in those studies, we determine what region of parameter space is inhabited by baroclinic
instability. We find that most of the physical parameter space maps onto a region of CGL
parameter space where non-chaotic, stable, monochromatic waves are the dominant solution
at long times. Intermittent behavior may be possible when the/3 effect is strong compared to
dissipation, but this has not been confirmed either analytically or by numerical simulation.

In §2, we give a detailed description of the Phillips Model, the physical variables in-
volved, and the scaling limits underpinning its derivation. The physical situations exam-
ined by Pedlosky in [6], [7], and [8] are then described and contrasted with the situation
considered here. In §3, the linear theory of baroclinic instability is outlined, and the CGL
for baroclinic instability is derived in detail. In §4, we use the calculated coefficients to map
realistic physical values of the variables onto Shraiman et al and Chat6's parameter regime,
thus giving a preliminary prediction of the structures that may be observable in baroclinic
instability
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2 Description of the Phillips Model

The physical picture underlying the Phillips Model is given in figure 1. Two layers of fluid
with different constant densities pi < P2 lie in an infinitely long channel of finite width L
and height D. The thickness of the lower layer is given by h(x, y). When undisturbed, each
layer has thickness D/2. The fluid is bounded above and below by rigid horizontal planes.
The x-axis is oriented along the channel, the y-axis is oriented across the channel, and the
z-axis points upward. The velocities ul, v), and w, are the upper layer fluid velocities in
the x, y, and z directions respectively. The lower layer velocities are likewise called U2, V2,
and w2 . The pressures are given by p, and P2. Each layer has viscosity V. The gravitational
acceleration is g, and the entire channel rotates with angular velocity Q. To include the
effect of the earth's sphericity, the rotation rate is assumed to vary linearly with y,

Q I (fo + 2)

,P2 Xf/ +LY

U,W

Figure 1: Physical picture of two layer channel model.

The Phillips model is derived as a scaling limit of the Navier-Stokes equations for flow
in tihe channel. The derivation is given in greater detail in §2 of [6], but we will cover the
salient points of the derivation here. Dimensionless equations of motion are obtained by
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scaling the dimensional variables as follows
(x', y) - (XY) z' Z t/ =t

X Y L • -- D7 --

(U, , (4) .,.) , Lw_,, h' = (h - D/2) ULfo
n U ' Wn D U' plUpfo

I pl+plg(z-D)
P1 piUfoL

p 2+p2g(z-D/2)-plgD/2
p 2 UfoL

where U is a characteristic scale for the horizontal velocities. On dropping primes we find

Dimensionless Parameter Name Size
f U/ (foL), Rossby number < 1
E 2v/foD 2 , Ekman number ý E2

F = 2°2 2  rotational Froude number O(1)g1D

6 = DIL, cross section aspect ratio < 1
S= 1L 2/U planetary vorticity factor 0 (1)

Table 1: Dimensionless parameters appearing in derivation of Phillips Model.

that the dimensionless equations are

[rUn aln aln On (1 + 3yD) Vn -- n

-[at+ -+Un-p+ Vn -'9y + Wn -5n Dx + 2 (2)

a Vn aVn + " Vn + n Vn! + 1+E0pn E 2

EL0t + Un D--x D Vn -- +W-- I +( y)u' + y 2 6 vn (3)

62 DWn DW Dw Dp, 62Eo(4
[D• + +n + vn + Oz + - +-VSwn, (4)

at axl~ D9y Dz j D 2

a-- + -5 _ + awn 0. (5)
Dx D9y D9Z

where
/2 D2  D2 \v= -2+6• 0-+• "

It is assumed that 6 < 1, so that horizontal straining contributes negligibly to viscous
dissipation. The kinematic condition at the interface between the two layers is

EF [h Dh Dy 1(1-+ cFh). (6)
+"- Dx Un "X- Vn - Wn, at zD -y

And no normal flow at the channel walls requires

vn =0, at y=0,1. (7)

Several dimensionless parameters have appeared, all of which are defined in table 1.
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The parameter F is a dinensionless measure of the width of the channel. Specifically,
it compares the channel width to the distance a linear gravity wave on the interface can
travel during a rotation period. The maximum speed of these waves is co = g/ D/2, where
g 9 (P2 - P1) /P 2 is the reduced gravity. The rotational period is T = 2w/fo. Therefore,

-2f'D 2(oT)

The Rossby number 6 measures the relative importance of inertial forces and Coriolis forces.
We will assume c < 1, so that the influence of rotation will be very strong. The Ekman
number E measures the ratio of viscous forces to Coriolis forces, and determines the thick-
ness of boundary layers in which viscosity plays an important role. We set E << 1 with
E]/2/( = 0(1). These limits are exploited by introducing asymptotic expansions of all the
dimensionless variables in powers of c, such as

(0O) + UI + E2U(2) +

Then, to leading order, the flow in both layers is in geostrophic and hydrostatic balance.
That is,

(0) (0)__ (0) ___ _ 0
U -- ay ' -Va ' Oz 0.

The leading order flow is also horizontally nondivergent,

a8(0) Dv($2 )
-D + -0,

which motivates the introduction of layer stream functions On•ri such that

(u(0),v7°)) =0 x VVPn.

By hydrostatic and geostrophic balance, the stream function is proportional to both the
pressure fluctuation and the height of the interface disturbance.

Additionally, viscous forces are significant only in thin boundary layers near the top and
bottom of the channel. Nevertheless, viscosity plays an important role in the dynamics of
the bulk. Carefully considering the dynamics of the boundary layers, one finds that vorticity
in the bulk forces forces fluid to emerge from those layers with weak vertical velocities. This
phenomenon is known as Ekman pumping. These vertical velocities act to damp vorticity
in the bulk through vortex stretching. From here, one may derive the evolution equations
for V), by manipulating the vertical vorticity equation to obtain

(D+ '9,01 D _ V'1 " ) (V 24ý) +I F (02 - 0b1) +i-,QY) = -,rV 2 0] (8)
49Dt Dx D9y Dy ax/I + (V2•Ov •

aDt '0 _x 60y Dy )x, ( 2V + F (V), - 02) + OY) = _-rV2  
02  (9)

where r = E /2( = O(1). In these equations, fast gravity waves have been filtered out and
only the slow, vortical dynamics remain.
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To investigate baroclinic instability, we write down evolution equations for perturbations
from a shear solution where the velocity of the upper layer is U and the velocity of the lower
layer is -U. Let

01 b= + -+b, 2 = UY +U+44

and substitute into equations (8) and (9). Dropping primes, we find

a + Ux q,+-"01(/3 +2FU)+rV 20i = -J(41,,q1 ), (10)

- U a ) q2 + 49x (0 - 2FU) + rV202 = -Jg(02, q2),,(1

q - V 2 01 +F (0 2 - 0 1 ), (12)

q2 = V 202 +F((1 - 0 2). (13)

with boundary conditions
'on -0' y=0,1.

These equations are the Phillips model of baroclinic instability.
Pedlosky and Romea's papers worked with these equations for a the channel periodic

in x. In [6], Pedlosky derived amplitude ODEs for the purely viscous case /3 = 0 and
r = 0(1), and the inviscid cases with r = 0 and /3 = 0(1) or /3 = 0. Pedlosky obtained
a Ginzburg-Landau ODE with real coefficients for /3 = 0, r = 0(1). However, the small
viscosity cases do not lead to Ginzburg-Landau type amplitude equations, because there is
no scale separation between the decay rate of the stable modes and the growth rate of the
unstable modes. Also, the case of 0 < r << 1 is a singular limit of the linear theory. The
introduction of an infinitesimal viscosity actually destabilizes the flow, reducing the critical
value of U by an 0(1) amount. Pedlosky derived amplitude equations for this subtle case
with /3 = 0 in [7]. In [11], Romea tackled the small r case with/3 = 0(1).

It seems, however, that the case with both /3 = 0(1) and r = 0(1) has never been
addressed. It is interesting to know how these two effects compete when they are of compa-
rable strength. The infinite-size limit, which introduces the possibility of spatio-temporal
disorder and localized structures, has also never been investigated.

3 Derivation of CGL

The Phillips model equations (10)-(13) may be written in the form

0a-MP = LI-J('P,M'I'), (14)

x = 0, for y=O,1. (15)
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where

'I' = (*P)•b

M = V 2 F V2 F

F Fu(v
LU (V A rV2 0

[-v (v -F) - •+ 2FU) ax ,V -UFA
UFa U- (V2 F) - (-3 a2FU) A _-rV

a-x ax a

and aA OB DA &B
J (A,B) O-A B* O - *

The * operator is termwise imltiplication of vectors without summing. That is(a)* bl ) ( (albl
a2 b2 a2b2

3.1 Linear Theory

Much of the structure of the finite amplitude evolution equations is determined by the linear
instability properties of the system. The linearized equations are

a
at

- 0, for y=0,1. (16)ax

One may seek normal mode solutions of the form

xI' (x, y, t) = Re { 41 (k, in, U)e i(kx H-my--t)}

Substitution of this form into equation (16) yields a system of algebraic equations

(+ iw, i)=0 (17)

where

Ma(k, m.) k 2 -('+ "2 + F) F
F -(k' + M'2 + F)

Uik (k 2 + Tn2 + F) + ... -ikUF

[(k', 7n, U) +r (k• + 7,7)2 ) - ik (0 + 2FU) - kU (k2 + M + F) ....

ikUF -ik (/3 -n2FU) + r (k2 + M2

For a null vector JJ to exist,

det (L + iwM) = 0 (18)
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Figure 2: Growth rate curves for m 7r, 2r, 37, 4w, calculated for the critical shear U Uc

at which a single mode k = k, is marginally stable.

must hold. Equation (18) implies that w must be a root of a second order polynomial with

coefficients that, are functions of k, m, and the physical parameters of the system. Thus,

for fixed values of these arguments there are at most two distinct values of w satisfying

equation (18). This condition defines the dispersion relationships

w = a (k,m,U,d)

(Lk- + (K 2 + F) /k2K4 (K 4 - 4F 2 ) U2 + F 2 (,3k + irK2) 2

z ( r K 2 + 2F) + K 2 (K 2 + 2F) (.19)

where d = 1,2, and K 2 = k 2 + Mn2 . A mode is stable if RImf E} < 0 and unstable if

Im{Q} > 0.
Because of the boundary condition (15), normal mode solutions exist only for mi

7r, 2wr, 37r,... when k # 0. However, because the channel is infinite in the x direction there is

"a continuous spectrum of solutions in k. Plotting rm {Qf} for admissible k and mn produces

"a discrete set of growth rate curves, as shown in figure (2).

When all the growth rate curves lie in lirm {Qf} < 0, the system is stable to infinites-

imal perturbations. For fixed (k, Tn), one may compute the critical value of the shear

U = Umarg(k, m) at which that particular mode becomes marginally stable by setting

lim {fE2(k, in, U, d)} = 0 and solving for U. One may use the identity

lRe Ja +bi sgn(a) v/a2 + +
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and perform some lengthy algebra, the result of which is

W()2 K 4 (K 2 + F) 2 + F 2 ,32

Umaig(k, m) = K 2 (K 2 + F)(2F- K 2) (20)

The mode is stable for U < Uinarg(k, m). Therefore, the entire system is stable for

U < U, = inf Urarg (k, m) (21)
0<1,:2<2F

It is worth noting that equation (20) implies that instability is impossible for F < 7r2/2.
Furthermore, one can show that Uiarg increases monotonically with m, so that the first
modes to become marginally stable as U is increased will lie on the m. = 7r curve.

3.2 Nonlinear modulation

At U = Uc, a single mode (k/, 7r) has lim {Q (k, 7)) = 0, and all other modes are stable. The
purpose of this work is to learn what happens when the shear is increased slightly above U,
and the system becomes weakly unstable. As the modes grow, their nonlinear interactions
play a pivotal role in the subsequent evolution of the instability.

Figure (6) visually summarizes the insight into this situation that linear theory provides.
If U = U, + A, with JAI < 1, then the maximum growth rate is positive and 0 (JA[). The
growth rate curve is well described by a parabolic function in the neighborhood of its

maximum, so there is a band of unstable wavenumbers of width 0 (JAI'/2) around k = k,

Any exact solution to (14), (15) can be written in the form

II'x~~t ' 
(22)

n= 0

Here, 4•(k, in, U) is the mode eigenvector defined by equation (17), and Ak7 -(t) tracks the
time evolution of the amplitude of mode (kC, in). The amplitudes of the unstable modes
will dominate because, as mentioned above, strongly stable modes decay rapidly and are
present due only to nonlinear forcing by the slowly evolving stable modes. That is, Akm
should be strongly peaked near k = k, on the m. = 7v branch.

Using this assumption to write an approximate form for the Fourier series-transform
solution (22) will motivate scalings for an asymptotic solution of this problem. First, ne-
glecting the summands for -7 1 and changing the integration variable to center on k = k,
gives

0-C

'IJ(x, y, t) ] Ak,+,k' 7,r(t)4'( k, + V', cv)e ('((k+k')x+7ry-Q(kc+k' 7rU+A)t))dk/

Now, we make use of the fact that the dominant contribution to the integral comes from

kC'= O(IA1//). Let IAI-'/2 k' and Taylor expand the integrand about k. One finds:

4j (.x, y, t) I(k~, i) C i(k~x+±iQ(kc,7,U,)t) / t I k( ~I k=k~t) _iA a u=uctd2
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where Ak = IAII12 Ak +IA 11/ 2k(t). This expression is the product of the marginally stable

mode at criticality with an amplitude envelope slowly varying in space and time:

IF(x, y, t) ;t A (IAI1/2 (x - cgt) , JAI t) P(kc,7r), Uc)e(i(kcE+y-1ct)) (23)

Here,

cg a (24)

is the group velocity of the marginally unstable mode. We also write Q, = f(kc, 7r, U,) and
P= '(kc, 7, vc).

Note that there is only one marginal wave at criticality, and not a pair of waves traveling
in opposite directions. This fact can be established by noting that, though the critical branch
satisfies ]Irm {Q} = 0 for both k, and -k,, we have lRe{ Q(-kc,,r, 1)} = -lRe{fQ (kc,7r, 1)}.
This implies that the critical modes (kc, 7r) and (-k,, 7r) differ by only a phase shift. The
second branch associated with (kc, 7r) is strongly damped. This loss of symmetry is due to
the /3-effect, which imposes a directionality to the propagation of waves supported by the
planetary vorticity gradient.

3.3 Method of Multiple Scales

The considerations leading to equation (23) reveal the proper scalings to use in a multiple-
scales approach to this problem. Let

U=Uv+A, T= IA11/2 t, A Il t, X = IAI1 2ax .

Then, seek a solution for %P of the form

T = IAlI/2 TI0)(t,z,y,T, T, X) + IAI A(2)(t,x, y, T,TX) + IA13/2 T( 3 )(t,x, y, T,,r,X) + .

The introduction of new space and time scales requires, by the chain rule,
0 0 0 00-9 -÷ 9 + IA1l1/2 a + IAx 09

-9 - 9 + IAl"/2 5-9

020 0

V 2  v 2 + v 2 A 1 1 / 2 0 - -- + 0A I j9 2

Substituting these transformations into the system (14), (15) and collecting terms of like
order in JAl, one may obtain a hierarchy of inhomogeneous linear problems. The most
straightforward way of doing this requires the explicit manipulation of the terms of M
and L. Unfortunately, proceeding in this manner produces extremely messy algebra and

complicated expressions that are difficult to interpret in terms of physical properties of
the system. However, it is possible to develop the expansion in general terms without
considering the detailed structure of the operators M and L. By keeping track of only the
formal structure of the expansion, we will be able to make useful simplifications throughout
the computation.
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When the linear operators M and L are applied to slowly varying wave packets, they
can be expanded in the following way. First, note that

M (ax + IAIK/2 ax, a) A(X,T,T)4j(k,m)ei(kx+myY) = p (k-i IAI 1/2  Tn Aei(kx+my)49Xm

Formally, we may treat ax as a variable and Taylor expand MV to find

M (ax + AIl/2 Ox, ay) A 4,Ii(kx•+ny) = ['(km)-ilAl'/- '(k,m) a

2 2 (kXm) 2 + " Aaei(kx+rny).

Thus, the formal expansion of M takes the form

i~kx+?n~-Qt A1/ A apO q
MA(X, T, r) T,(k,m, U)ei(kx+tny-2i) [ Ar - lAP/2 -- ( Z X)

IAl 02A 1a2p1 •' i(kx+my-Qt)

2 OX2  ak2  + '_

Likewise, the formal expansion of L takes the form

LA(X,T,T)•J(k,'mU)ei(kx+??y-Qt) ci(ka +?7y-Qt) [AL -lA1/2 OA A
+L A sgn(A)A141 - - i- )

To simplify notation, let I0 =(kc, r, U,) and Mo M((k, w).

Utilizing these expansions and collecting terms of 0 (IA11/2) yields the leading order

problem

a o- Lo) ADM - 0, (25)

- 0, for y =0,1. (26)

This is the linear problem (16) at the marginal shear U,. There are infinitely many normal
mode solutions, but all will decay at long times T = 0(1) except for the marginally stable
mode. As we are concerned with the long time evolution of the instability, we take the
leading order solution to be

-, Re ý {A(X, T, T)qe•(k'xOJ) sin ?Ty} (27)
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Collecting terms of 0 (I AI) yields

(aMM - L, q(2) a - kMlI) + i a O _____ _ J .41(1(, I) Oi(())
o- ata ° 5• 'xak aX

aq,(2)
- - 0, for y=0,1. (28)

ax

The operator on the left hand side of this equation is the same as in equation (26). Thus,
inhomogeneous terms proportional to the marginally stable mode will produce a secular
response in Xp( 2). The elimination of these secular terms introduces a first constraint on the
evolution of A(X, T, -r).

Substituting the solution (27) into equation (28), one finds

at aT k ak aX
(•tMo-/o) (2) - e - c----i [-L- DM Zl-•jcDA sn

+1 M o'iiC } -- A 12 sin27y. (29)

The overbar represents complex conjugation. Since equation (29) is linear, Xp(2) takes the
form

T (2) =Re A {A(2) (X, T, T)e i(kcx-Q2t) } sin 7ry + B(2) (X, T, T) sin 27ry + U(2) (X, T, T) y-

The first term represents a correction proportional to the marginally stable mode. The
second two terms are independent of x, and represent an O(IAI) correction to the zonal
mean flow. Substituting this form into equation (29) and collecting terms proportional to
sin 27y yields a problem for B(2 ):

-[(0, 27r, Uc)B(2) - 2-]im {'Ic* M c} A

Using
[(0, 27r, Uv) = 47r 2rl

gives

B _(2) k, Im {C[ * Mo1'c} IAl2. (30)
87r

Collecting terms proportional to sin 7ry yields a problem for A(2):

(E +flA) A (2) = Iý~ a A. + ý )L D , aDA[ ±~QMM 0  -+ -+ (0 ?,
DT ýDK ak O X

Now, as demonstrated by equation (17), the operator on the left hand side is singular. For
the equation to be solvable, the right hand side must be orthogonal to the operator's left
null vector. That is, for Vic such that

(, + 23 ) = 0,
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we must have

qt oA I±-• O A i &+i- = 0. (31)
C 5&T a k) axj(1

This equation implies something about the evolution of A. Unfortunately, it is a mess and
difficult to interpret physically, especially if the matrix products are written out in full. It
is at this point that our attention to the formal structure of the expansion becomes useful.
Note that

[ (±, i Q(k, 7r, U,) 'I- (k, -iT, U,)] 0.

If we expand this expression with the product rule and evaluate at k = kc, we find

k + 'CA ý = -i c + o( k -5 T ak k-kk-

That is, the operator splits into a term proportional to the group velocity of the marginal
wave (see equation (24)) and a term that is orthogonal to the left null vector 10c by definition!
Substituting this new relation into equation (31) yields a more familiar evolution equation
for A:

DA + AO-T +gOx -O

The amplitude envelope propagates at the group velocity of the marginally stable wave. We
now write A(X, T, T) = A(71, T) where 71 = X - cgT. We also have

ax -1' T -OcT .

It. is still necessary to solve for AP). One solution is

(2), OAd()= -i0: ~ (32)
A a~~k a7l 32

One might add a homogeneous term proportional to 4), to this solution, but the inclusion
of such a term has no iml)act on the results of the computation. The term is proportional
to T,( so we may simply require that it be absorbed into the leading order solution.

Finally, U(2) is determined by enforcing the boundary condition (15). It can be shown
[10] that the normal flow condition implies a constraint on the zonally averaged flow at the
boundaries,

'U"'n M= Om -M adx = 0, for y = 0, 1.

This equation implies that, as higher order corrections develop, they cannot alter the mean
zonal flow at the boundaries. We deduce that,

U(2) = -27rB(2)

To summarize, we have found

-1,a2) Al aA i(klx-imt) k M'JA A 2  27' - 2r( - 1
q,(')=,e - -•,•)'! sintry- ]m{coc}A (in7-2r -• .

Re ak CSillF J 8 C oj (
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Collecting terms of 0 (1A13/2) yields

a( ,,- M L, l 3) a a qf(2)
-�oO tk T O - 5 aT•+--+

09t_ o9 ( -5t(1

a~ a2 aj 10a2 a2L l OOM i
- 0-, XTO 2 OX 2 K -49 t -5k) + u

-J (X(2), lqo'(i)) -j (p(l), ýAOp(2)) + J (4(1), rAF(M)) . (33)

where
(()) ' 0 (1 °O(1)) -O 0X (°O(1))"

ax O1) a(y Ox

Since our only purpose in proceeding to this order is to find another evolution equation for A,
it is not necessary to solve for Q(3) in full. We simply note that the right hand side of equa-
tion (33) contains terms proportional to e i(kczx-ct) sin 7ry, sin 27ry, and ei(kcx-ct) sin 37ry.
Therefore, since the problem is linear we may assume

4p(3) = Re {ei(kcx-Qct) (A(3) sin -ry + B(3 ) sin 37y) } + C(3) sin 27ry - U(3)y.

The evolution equation we seek will emerge as we attempt to solve for A(. Substituting
in the solutions for M(1) and qj(2) and equating terms proportional to sin 'ry yields

(L± +QM) A(3 ) A ) AI+ 1U1 ai2 + [12A IAl2 . (34)

where

-±[o +iQ2 2 +, Oi , +0 0 2i.
2 ojkak ak Oakak~ O'ý1c) I

and

l2  = [r 311m j4'C*-Mýo T'c}*.(Mo4'c) -MliNm{4bc * MQTo4C}* xc1II - 8r

where

M M (0, 2-A-) + 2F _2F )2= ( - 3F 3 )
Using the relationship

[(1 + iQ(k, 7r, U,) 'iV (k, 7r, U,)]1 0,

one can show that I (a2Q aoo)
I1= -- i- ±2i2 [V o2c

11 2 z0/ck2 M 04 T k-(0 + ) O/cý4

Likewise, using

9 0 +iQ(k, rQu) '(ks,7,U)] = 0,
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one may show that oL_ kc = -i Mo% (E + i•cKAo)au 9O

Finally, forming the solvability condition as in equation (31) gives

,9A 02A
=- =IA + v -(A IA12 . (35)

where the coefficients are given by

t = sgn(A) -sgn(A) , (36)
i c ýTuOU (36)

1. ___
102Q•

V = - • =_ (37)
2 Lk, ~ ~ ___ __

ik 2 4J' O~ 'CMICC
8r t ý c *-Ml {ic*Moie (38)

We have derived a complex Ginzburg-Landau equation governing the onset of baroclinic
instability in a two layer model. The expressions for the coefficients are expressed in terms
of quantities computable from the linear theory of baroclinic modes. Specifically, we have

where
K2 + F 3 + 2FUc r K_ 2

"F F (U, - c) kc F (U, - c)

where c = Q,/k,. A useful fact about y is that

_ v K2+F + -2FU, .+r_ K
"F F(U,+c) 'kF (U,+c)

The left, null vector '4j* is simply

41t 1-Uc~c

After some algebra, one finds the following explicit expressions for the coefficients:

ikcF sgn (A) [ + - -C ____

i F - + U0+C F(U,-c) F(Uc +c)J (39)

Z + -j 2 z'
1 [k( ,,/9 2 Uc~cg±,2 2 Uc~cg) ( 1 ,-_ ___

= 2z, , I+ 2+2 u-c+ 2-y-2 U + C-9 + r 2

Z (Uc-c+) Z Y (FUc-c+ (K Ucc (0)]

+(,-C9 + Y FC-CQ_(!K2 + F) "y~c+ + "yY' (40)
ikcF Un-c UH- jUc + C

ik, 2 47 2 +3F -y 2 ,.YI2 (472 + 3F) 3F (IYr + _Y2)

8 8(Z + y2 Z') K(- _C)2± (U, +C) 2  + C -C
S3y2 IYl2 Z' 3Z (

2] (41)
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where

Z -3 + 2FU, *r K__c

(Uvc)- • kc (u-c) 2 '
Z, 3l - 2FUc r Kýc--•+•• +kc(u•+)'

S= 2 kc + 2FUc + 2ikcrY = 2kcUc - c

=2k2+ -2FUc + 2ikcr
Uc+c

4 Parameter Regime Analysis

Having computed the coefficients of equation (35) in terms of physical variables, we are now
prepared to determine which of the qualitative dynamics of the CGL observed numerically
in [1] and [12] may be observable in baroclinic instability.

In [1], Chat6 analyzes the CGL in the form

o9B a 2B- = B + (1 + ibi) - (b3 - i) IB 12 B. (42)

where bl, b3 are real and b3 > 0. This simple form is obtained from equation (35) by making
the transformations

IRefu I m C .HmIP7J / tt]Re{/YJr, x lRe J-) B(x,'t) .--- -e- )A (, , Re f /)V P11} "'V-I •M11

from which we find

lira {v}(43)bi = " sgn(Em {€})] (43
ZDe{C}l

b3  Re f (44)

Thus, the parameter space of the CGL has two real dimensions. 1

The qualitatively different regimes of parameter space are mapped with respect to b,
and b3 in figure 3a. This figure is reproduced from [1]. To discover which regimes are
relevant to baroclinic instability, b, and b3 were computed numerically for a range of /3, r,
and F.

It was found that bl, b3 are functions of F and 3/r only, though this fact is not immedi-
ately obvious from the formulas for ( and v. For all tested values of F, /3/r, we found bl < 0.
At fixed F, decreasing 3/r increases b3 and decreases lb, 1. As //r is varied, the coefficients
roughly satisfy bib 3 = C(F). Decreasing F at fixed 03/r also increases b3 and decreases Ib1 1.
In the limit that 03/r -• 0 or F -ý 1r2 /2, we find that b3 -- oc and b, -* 0. 2 In this limit,

1Technically, this form can be obtained from equation (35) only if irn {(} < 0, as is apparent from an
inspection of the transformations. However, if lIm {I} > 0, taking the complex conjugate of equation (1) and
then applying the transformations yields equation (42) for B.

2Recall from §3 that for F < 7r2 /2, baroclinic instability is impossible.
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Figure 3: (a) The parameter regime diagram of the CGL produced by Chat6, Shraiman, et
al. Reproduced from [1]. (b) These points represent the only points for 5 < F < 50 and
0.1 < fl/r < 50 that fall in the sector of parameter space studied in [1], [12]. The points
correspond to fl/r • 10 - 40 and fall well within the "no chaos" regime.

the coefficients of the CGL are purely real. The real Ginzburg-Landau equation, unlike its
complex cousin, is derivable from a variational principle, and its solutions always relax to
a stationary equilibrium state.

The values of b, and b3 for 5 < F < 50 and 0.1 < 31/7 < 50 are plotted in figure 4. The
lower limits of these ranges were chosen to exclude divergent values of b3 as F --- 7r'/2 ,,: 4.93
and 0//r ---+ 0. An upper limit of 50 was chosen for both F and /3/r to prevent these
parameters from being much more than an order of magnitude larger than one. It is implicit
in the derivation of equation (35) that F, f, r << IA[-1/2 . The larger these parameters
become, the smaller JIA must be for equation (35) to be asymptotically consistent.

As baroclinic instability resides exclusively in the region b, < 0, we focus on the dy-
namical regimes present there. For b] < b3, a band of stable plane wave solutions3 of the
formlk

B B(k)ei(kx-(k))

exists with i32 = (1 - k2) /b 3 and w - 1/b3 - (b, + 1/b3 )k2 . These solutions are linearly
3 VWhen b1 = b3 , this band of wavenumbers vanishes, and stable monochromatic plane wave solutions

cease to exist. This bifurcation is known as the Benjamin-Feir instability of the k = 0 state. The turbulent
regimes in the Benjanin-Feir mnstable region bi > b3 are the subject of [12], but because these regimes
appear to be inaccessible to baroclinic instability in the Phillips model, we omit. discussion of them here.
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Figure 4: Values of b, and b3 computed for a range of values of i3/r and F. Each streak of
like-shaped markers corresponds to a fixed value of f/r with F = 5, 7, 9,16, 50. Increasing
F with fixed O3/r decreases b3 and increases lb1l. Increasing 0/r with fixed F yields the
same trend, but the dependence of 3/r is stronger than on F.

stable for

(N3 - b1 )
3b 3 + -2 b"

However, the existence of stable plane wave solutions does not preclude the existence of
chaotic solutions or localized structures in the same parameter regime. Chat6 found that
for sufficiently small b3 solutions could be found numerically in which localized, propagating
structures separate large regions of stable plane waves. The structures are characterized
by a sharp reduction in JAI, and discontinuities or rapid variations in the phase of A. The
structures act as nucleation sites for disorder; the stable plane wave regions do not break
down until they are contaminated by one of these structures. The nature of these structures
is discussed in the context of known exact solutions of the CGL at some length in [1] and
[13].

However, it is not yet clear whether these structures can be expected to appear in
baroclinic instability. For the range of /, r, and F, tested here, the coefficients bl, and b3
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Figure 5: (a) Space-time, plot of JAI..x increases left to right and t increases upwards. White
represents the amplitude maximum JAI = 2.37, and black represents JAI = 0.
(b) Space-time plot of the phase 05 of A. Reproduced from [1]. In this run, b, = -0.75,
b3 = 0.18.

generally lie far outside the regfion of parameter space explored directly by Chat6. Figure
3b shows those parameter values that did lie in that region, and all of those are well within
the "no chaos" zone in which interi-ittency was not observed. For small /3/r and F, we
have seen that the coefficents asymptote to b, = 0 and b3 = 0, where the dynamics
collapse to those of the real Ginzlburg-Landau equation. It is unlikely that disordered states
will be discovered in this limit, since solutions of the real Ginzburg-Landau always relax
to equilibrium. But as 0/r/1 increases, b3 b)ecomes small. This raises the possibility of
intermittency for sufficiently large 0/r. However, Jbb I simultaneously becomes large as /3/r
increases, pushing the coefficients out of the sector of parameter space observed by Chat6.
Chat6. found that as Ji Il increases, b3 must be ever smaller for intermittency to be observed.
The question, then, is wAhether b3 decreases quickly enough to counteract the stabilizing
effect of increased JIbl. Furthermore, /O/r cannot be increased without bound. We musthave I/2 << T- << absdel -1/2 and << IAI-1/2 for equation (35) to be accurate, and thus

O/ << JAI. Numerical simulations of CGL at parameter values appropriate to baroclinie
instability are necessary to determine if "baroclinic structures" will emerge or not.

5 Conclusions

We. have computed a complex Ginzbug-Landau equation for baroclinic instability in the
Phillips model. We have compared the coefficient of this equation to a parameter regime
study by Chat6 [1] and Shraim-an et al [12]. The comparison suggests that, for most physical
situations, baroclinic instability should saturate to a monochromatic wave train without
intermittency or spatial disorder.

However, the search for baroc:linic structures should not be called off yet. The possibility
remains that localized structures and spatiotemporal disorder could emnerge for large/3/r.
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Further numerical simulation of the CGL is necessary to determine whether this will happen,
as this region of parameter space was not explored in Chat6's paper. In future work,
we intend to search for baroclinic structures in numerical solutions of both the CGL and
more realistic models of baroclinic instability, such as the Phillips model or a continuously
stratified QG model.
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Figure 6: In both these figures, waves modes' growth rates rm {Q} are plotted against zonal
wavenumber k. (a) When U = U, + A, zooming in around k = k, reveals a band of unstable

wavenumbers k with growth rates of O(A). The unstable band has width 0 (IA11/2).

(b) When the channel has finite length, only a discrete spectrum of wavenumbers k are
allowed. In this case, one mode may become unstable alone, while all others remain stable.
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Intermittency in Some Simple Models for Turbulent Transport

Arghir Dani Zarnescu

1 Introduction

Consider the passive scalar equation

Tt + (u. V)T= EAT + F., Tt=o=

where T is a quantity which is passively advected by a fluid with velocity u and F is
an external forcing. The quantity T can be for instance heat, or dye used in visualizing
turbulent effects, or a pollutant. The passive term refers to the fact that the effect of T
on the fluid is negligible so that one can regard 'vi, the velocity of the fluid, as being an
externally given quantity, which does not depend on the evolution of T.

Although (1) is a linear equation for T, the relation between the passive scalar field T
and the velocity field vu is nonlinear. The influence of the velocity field on the statistics
of T is very subtle and difficult to analyze in general. For instance, the interplay between

u on the one hand and F and 0 on the other hand may lead to rare but large amplitude
fluctuations of T (in space, time or both) which differ considerably from the average and

contribute significantly to the statistics.
The matter of interest is then how rare these large fluctuations are. In many situations,

based on the Central Limit Theorem as a heuristical principle, one would expect things
to organize themselves so that in the average the distribution of the variable of interest is

Gaussian. But large fluctuations can be more frequent than what is required for the Central
Limit theorem to apply, and then fluctuations can dominate the statistics in a non-Gaussian

way. This phenomenon is referred to as intermittency.

One signature of intermittency is the presence of non-Gaussian tails for the probability
distribution function (PDF from now on) of T. It should be mentioned that there are

physical experiments where such a behavior has been observed ([1],[2]).
We will be inlerested in identifying flows as simple as possible in which the large scale

intermittency appears. Our goal is thus to identify some of the simplest mechanisms capable
of producing intermittency.

While the flows we choose are simplistic, these models can provide intuition about the
phenomena that occur in real turbulence. and with these specific choices the calculations
are completely rigorous and unambiguous. This is the path followed also in [5] and there
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one can find some more discussions on the relevance of this kind of approach. Results in a
similar framework can be found in [3], [4],[6].

Our choice of flows will fall in the general class of flows proposed by M. Avellaneda and
A. Majda, namely flows of the type

U( x,yt) (w ,t)

which can be regarded as nonlinear two dimensional shear velocity fields.

2 Heuristics

We will start by offering a heuristical interpretation of the mechanism of intermittency in a
general setting and then rigorously prove it for a particular choice of flow. The explanation
for the decaying case (no forcing) has already been given in [3] and it is included here for
the sake of completeness.

In the decaying case we have the following representation formula for the solution of (1)

T(x, t) = JR ¢(y)g(t, x, y)dy (2)

where g(t, x, y) is the random function (for fixed x and t) giving the probability density
function of X(t) in each realization of u, where X(t) is the solution of the characteristic
SDE associated to (1))

dX(t) = u(X(t), t)dt + v'/d,3(t), X(t = 0) = x (3)

where 13(t) is a Brownian motion accounting for molecular diffusion. In terms of X(t), (2)
can be written as

T(x,t) = E"¢(X(t))

where E0 denotes expectation over 0(t) conditional on X(t = 0) = x.
As time evolves g(t, x, y) broadens and assuming that ¢ has mean zero, it is clear from

the representation formula (2) that the dynamics will smooth out any spatial fluctuations
in the initial data, with an average rate depending on the average growth rate of the width
of g(t, x, y).

On the other hand in any realization where g(t, x, y) broadens abnormally slowly, one
will observe a large fluctuation in the scalar field amplitude at point x, even if the initial
data sampled by X(t) is very typical (see Figure 1).

The situation is different in the forced case. Then, the representation formula for the
solution becomes

T(x, t) = j ¢(y)g(t, x, y)dy + j J F(y)g(t - s, x, y)dyds (4)
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Figure 1: The heuristics in the decaying case

Equivalently, the above formula can be written in terms of averages over X(t) , giving us a
Lagrangian picture of the evolution of T

T(x, t) = E"O(X(t)) + EOF(X(t - s))ds (5)

In general, as t -- oc one has EI(X(t)) = JRO(y)g(t, x, y)dy - 0 and thus one is left
with analyzing the effect of the forcing term

EF(X(t - s))ds (6)

Generically the trajectories of the X(t - s) will tend not to be on the level curves of F, and
given the mixing effect of the flow they will be relatively uniformly spread within a short
time, so F(X(t - s)) will average to a zero value. On the other hand there will be (rare!)
realizations of 'u where the effect of mixing will not be so strong, the diffusion will be the

main (slow) mechanism for the spreading of X(t), which will happen in a slow time. Thus,
those X(t - s) which start on a level curve of F will have the possibility of remaining on

the level curves for a time long enough so that the average of F(X(t - s)) will be equal to
a nonzero constant (close to the value of F on that level set).

In both cases rare realizations may have very strong effects on large scales. This will

prevent the type of averaging which leads, by the Central Limit Theorem to a Gaussian
distribution for the PDF of T , and indeed one will observe "fat" (non-Gaussian) tails for
the PDF, consistent with large scale intermittency.

In our approach we will use a Lagrangian picture as this offers a simple understanding
of the phenomena which occur. Indeed, we will consider the associated stochastic differ-
ential equations associated to the passive scalar equation and we will use them to obtain
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representations formula for T from which we will compute the PDF of T. Thus, one can
see the appearance of intermittency as the result of clustering of close trajectories in the
realizations where the effect of turbulent mixing is abnormally weak.

3 The Decaying Case

We will take the flow to be
n= (7)

where g is a Gaussian random variable, with mean zero and variance one. This is a time in-
dependent, "periodic shear" analogue of the random shear model of A.Majda (see [5]),model
in which the sin(x) from our equation is just x and g is time dependent.

In this case (1) reduces to

aT aT
- + gsin(x) - = cAT, Tito = 0(y) (8)

We also assume that the initial data depends only on y and it is a mean zero Gaussian
random process, statistically independent of the random velocity field, and

¢(y) = JR ePY v'E(p)dW(p) (9)

with energy spectrum

E(p) = CEfkl'iP(k) (10)

where 0(k) is a cutoff function, rapidly decaying for Jki > 1, 0(0) = 1 and satisfying
O(k) = V)(-k). The quantity CE is a normalizing constant and dW is a complex white
noise process (independent of g), with

< dW(p), dWV(q) >= 6 (p - q)dpdq

The exponent a > -1 in formula (10) measures the decay of the spatial correlation of the
initial condition 0(y); the smaller a, the longer the spatial correlation.

In the case where there is no forcing, it is well known that T will decay to zero. Therefore,
in order to observe the intermittency we will look at T rescaled by the energy E = lET 2

which we shall denote by 0 =- T We will compute in the following the PDF of 0 in the

long time limit and we will obtain that

2P(X >A) ;týCIA ',;+, as A oo (1

where C1 is a constant, independent of time, whose value can be computed explicitly (in
general in the following C1, C2,... will be used to denote constants which can be explicitly
computed, and are independent of time).

Consider the stochastic differential equations associated with (8)
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X (t) = vF2-E dO,(t) (2
Y(t) = g sin(X(t))dt +- 2vcd/3u,(t)

The equations (12) have the solution

{ X(t) x ±+ v/23c(t) t (13)
Y(t) y + g fo sin(x + v2-cO,(s))ds + V2-ciy (t)

Since g and /3 are indep)endent, we have then that

E =Y(t) y -+ g sin(x)e-(ds = y +- - sin(x)(1 - C`)

Sy + g sin (x), as t , oc (14)C

and

IE(Y(t) - ]E(Y(t)))
2 -

= EO.q•2 f• . sin() + 2Oci(s)) sin(x + V2cx3(s'))dsds' + Et + g2 (fo sin(x)e-sds) 2

Z f 1f(' .,o~t('-,"-•";, I - (Cos(2x)e-c(s+s'+2"i"(ss)))dSds' + d -.1 sin2(x)(1 - e-,1)2
2 o JO) C2

ft +-g 2 ( e + 2_C-)t g2c-s(2x) e(-401 _ 7(e-€t-)) +-g2Sin2(X) X+1f (15)

Thus, for t >> 1 we have

]EO(Y(t) - IE(Y(t)))
2 _ Et + g2t (16)

Next observe that, using (9), we have an explicit representation of T as

T E30(Yt) = J2C eiw~2v) VE(p)dW7(p) (17)

where we used the fact that 0 is a function of only one variable; m*(t) and v(t) are respectively
the mean and variance of Y(t) with respect to the Brownian motion 0 which, taking into
account (14) and (16), for large t become

m(t) - y + - sin(X)

V(t) _ Ct +g2t (18)

Introduce the resealed variable

and the rescaled white noise

252



d•Vt(z) d v 1_~W ( (20v(t)) (20)

where = stands for the equality in the sense of distributions. In terms of these quantities
we can rewrite the representation formula of T as

= z 2 v(t)- V4C-Elz 2 dVt(z) (21)

Therefore (using (18))

._ t_z2 z )d (z) ,0ast--oo
/E JRe 2 P vZOV)/ (t)/V

where the limit here and below is understood in the sense of distributions and

S= C e-12IzI-dWt(z) (22)

This implies that for large times we have

T,.)£ d <')-+1)-
T(t, vt)-- (23)

Using the explicit formula for T we can compute E(t) ]Eg,,T 2 which is

]EgjT 2 = CEE2[v(t) •- e-z IZI"O( Z )dz] (24)

From (18), this is

E(t) d (1+o) o(t + 2 (25)

By rescaling T we will obtain a finite limit, namely let us consider the quantity:

0 = (26)

Then the above allow us to conclude that

O(t, .) £ O(t) ast -+ oo (27)

where

S2 .- 1+ o
C = c 3 (E + f)) 4 (28)

We can now compute the tails of the probability distribution of 9. As ¢ is normally
distributed with mean zero and variance 6 (which can be explicitly computed, see (22)),
we have (assuming without loss of generality that C3 = 1, I = 1 for the sake of simplifying
the computation):

a
2

P(0 > A) = P((E + E-)-- > A) =>, 72 =7+ dadP6  (29)
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where

2g2 r 2 2(0
P6 I P(f + <36) L e dz (30)

2

Integrating by parts in (29) we obtain:

(1 + r)A =-3 1,26'

P(0> A) - 2 1 /S e- 2 2° P5d6 (31)

In order to compute the integral, for A >> 1 thanks to the exponential factor and to
the Laplace method, we only need to know P6 for small 6. Using the change of variables

4

sA-IT• by standard, though tedious, computations we get (11) to the leading order in

A (as A -4oo).

4 The Forced Case

4.1 The one mode, time independent, stirring

We will consider the flow to be given by:

- & i ~))(32)U, =sinl(X +

where g is a Gaussian random variable which has mean zero and variance one and (p is a
random variable uniformly distributed on [0, 22r]. The two random variables are indepen-
dent.

The passive scalar equation becomes

Tt + .qT,, + sin(x +- +)T 2 = T AT (33)

Assume also that the nman gradient of T is imposed

Y (34)

L

Then jT will satisfy the equation

sin(x + 0)
Tt H- g1T, H- si oH )Tv +- L CAT (35)

,i + sin( L -

In this specific case, the general heuristics from the second section can be made more

precise and we have a simpler mechanism which is responsible for intermittency and can be
understood as follows.

Let us assume that T represents the temperature and we have a region made of two

parts, one hot ((x, y) E R'2 with x > 0) and one cold ((x, y) - R2 with x < 0). In the generic
case, when g :ý 0 we will have transport in both x and y directions, and thus mixing of the
cold and hot which will lead to a decrease in the average temperature. In the realizations
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when g : 0, however, the flow u points only in the y direction, so (neglecting the effect
of diffusion) there is transport only in the y direction. The hot region remains hot, and
the cold one cold. The extreme values of temperature will not be significantly changed.
Therefore one expects that the rare realizations where g • 0 will strongly influence the
average over all the realizations leading to a non-Gaussian distribution of T. Indeed, we
will obtain that the tails of the PDF of T decay like A- 2.

In order to make the above reasoning rigorous let us consider the stochastic differential
equations associated to (33)

dX(t) = gdt + v~dO.,(t), X0 =x

dY(t) sin(X(t) + q)dt + v/•d3y (t), Y0 = y

which have the solution

X(t) = x + g t + v ox (t)
Y (t) =Y + fo" sin (x + 0 + gs + v/N/x (s)) ds + V ',y (t)

Assuming that the initial data is zero (if not it can be shown it decays) by Feynman-Kac
formula we get the following representation of the solution

T lE3 sin(x + ¢ + gs + v'23~(s))ds (36)J L

Thus in each realization we have that

lim T(x, y, t) - T(x, t) = 0 (37)
t--+ oO

where T is

- 1 [g cos(x + )-E sin(x + 0)] (38)•()=L E2 + g2

We are interested now in computing

f(A) = P(T(x) Ž_ A) (39)

To this extent,taking into account the independence of ¢ and g, we will compute first
the moments only with respect to the uniformly distributed random variable ¢. Indeed, we
have

]EeT 2n = [L(C2 + g2)]- 2n 27r (g cos(e) _ ESin(0)) 2nd¢ (40)
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One can compute the last integral, namely

J 27 (g oS 6Si n(0))2n 27r
(do - 10[(g + ei)ei + (g - e)e-`]2"dx

1 27 E2  0 (2 n )(g + .)2m(g ji)meix( 2 n-m-m)dx22n 10 M= M

1 (2nW+ .2)n (41)S22n (24

So

(- 1)i k2n ET2n
EcekT n= (2n)!

()2  1 (62 +2)-n

=J( L2(2 +g2)) (42)

(where JO is the Bessel function of the first kind) and thus

f(k) = -(E 2 + dg (43)

Expressing f(A) in terms of its inverse Fourier transform and using the fact that f(A)
is real valued we have

f(A) R •? • J f(k)ci'•dk = RZ j fi(k) cos(kA)dk

f1 ((V/ -k2'\ '\

V/27,3----/2R L2(2 ±+g2) d9 ) cos(kA )dk

j•~ .S- ._ 2. _C-92/2 DC L2d !2os(kA)dkdgJ j2T3 2 _ V!/2 JO ' (VL2(62 + 2))
2 - / 2 DO c os (k ) d k d g

'S SR '3/2 -9 JO( T2 (E2 g2))+�±s ----- ~ (2 _. 2] J•, / J-

where for the second we used the fact that the Bessel function of the first kind is an even
function; also for the fourth equality we used Fubini to interchange the order of integration.

Recall that

2 cos~k~dh-! 62 + g2 (4
Jocos(kA)dk = 1 - L 2 C2 2 

- L 2 A2 g2

which is a real number if
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C2, E2] (45)gC Vý LA 2  Lý2 A2 -

and purely imaginary (i.e. with zero real part) otherwise. Using this observation and
combining the last two relations with get:

f(A) - v,-+3/2 j T e9- 1 - L2  
g

2A2  dg (46)
27F3/ 2C2 - L2A2g2d

which clearly holds if and only if A < -L. On the other hand, taking into account the

definition of T(x) and of f(A) it is easy to see that for A > -L we will have f(A) 0 and
thus f(A) is a function with bounded support.

It follows that

2

ef- J00 -V2 gr( )(7lim f(\) = 3 ./ e 24
C-0 O 7r J 1 - L2 A2 g2

e 2L2th2 erf(s

v LjAx) V 
(47)

which asymptotically, in the limit A - wc behaves like

lim f (A) , ŽA- (48)
C-0 7r2

4.2 The Gaussian multimode forcing

In this section we consider the flow

x jr (49)

where g is a Gaussian random variable which has mean 0 and variance 1, and v(x) is a
Gaussian process specified by

v(x) = j dW(k)VE(k)e-kx (50)

(we will need to assume that the function E(k) is compactly supported away from 0 and
also that f E(k)dkdk < cc).

In this case we obtain a similar behavior as before, though the ingredients are quite

different. Namely we will obtain that the tails of the PDF of T will decay like A- 2 .

Indeed, arguing analogously as before we will obtain the solution will evolve as t -- cc

to the solution of stationary equation

0 = -gTx + ETX v(x) (51)
L

which will give us the representation formula for he solution:
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T(x) L1 dt dWl,(k) E'ileik(x-gt)-ck
2t

i f 1 ( 2
-- i R d14(k) E(k)eikx ck2 + ikg (52)L T

This is a Gaussian random variable (as a superposition of Gaussians ) whose moments
with respect to W41 are:

E(Tx = (2,)!_(ET2-•. 2,2)n .2n E(k)dk )n (53)

2 - 2n=! 2fln! I k(ck +g

F(c,g)

Hence
-1=k 2- (2n,)! egk2F(-,g)

lEwcj T =ZIo (2n)! 2n)! F( _-g)F = C e (54)

which implies

f =A) - / j 2/e k\dkdg (55)

114 f E(k)dk
Since F(E,g) -- * -( when e c 0, with M = k-7 < o c) and by Lebesgue's doma-

inated convergence theorem if follows that f,(A)--f (A) where (assuming without loss of
generality for the sake of computational simplicity that M = 1)

9! 2 k2 fiA9
f(A) = e 2 e 2 kdk dg = 2v7 J 2 gdg

lA e c 2 (56)
+2 - - 7(1 + A2 )
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1 Introduction

We begin by outlining the two pieces of observational evidence that motivate this study.

1.1 Anomalous diffusion

The density of the abyssal ocean decreases by almost 3% from the ocean bed to the seat, of
the thermocline. Even when compressibility effects, such as would exist in any hydrostat-
ically balanced fluid body, are accounted for there remains a significant potential density
variation with depth, representing unequal distributions of temperature and salinity. The
maintenance of this density stratification must be understood as a dynamic process. In nar-
row regions of the ocean at high latitudes, fluid near the ocean surface is cooled sufficiently
that it becomes denser than the fluid that supports it, and sinks to great depths, mixing
with entrained fluid. Accordingly, latitudinal sections of the potential density in the ocean
often depict cold dense intrusions of fluid from the Antarctic or Arctic Oceans, see the
Figure 1. It is estimated that in the Pacific Ocean such cold intrusions supply fluid to the
lowest kilometre of ocean at a rate of 25-30 x 109kgs-1 [16]. There must be a corresponding
upwelling of fluid in the mid-ocean or else the centre of mass of the fluid system would
be lowered with time. Such an upwelling would annihilate any variation in density, unless
thwarted by downward diflusion. Specifically, if we write 'w for the mid-ocean upwelling
velocity, we can construct an approximate balance for the two rates of density transport in
the vertical direction z9: Op O2 pop -0 , (1)

t7)

Balance in this equation leads to equilibrium distributions with a vertical scale height
H = K/w, and with y : 10-7i-ms-1 and H 1kmi known for the abyssal ocean, we may
use this formula, to estimate the effective diffusion of density: t ;. 10-4m 2 s-1 [16]. This
greatly exceeds the molecular diffusivities of salt and heat (on the order of 10- 9m 2s- 1 and

1A great deal of coarse-graining of horizontal effects, and averaging out of vertical variations must take
place before this one dimensional equation may be arrived at, but. the inferences drawn from it are supported
by more nuanced calculations. In particular, the balance may inmmediately be put on a more firm footing
by interpreting z as a local diapycnal coordinate - that is relating the isopycnal surface-normal components
of the velocity field and diffusive flux 115].
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Latitude

Figure 1: Potential density (a) distribution in a section of the Pacific Ocean stretching from
Antarctica (south) to the Aleutians (north). Isosurfaces are labelled by the (a - 1000) x
103/kgm- 3 , in increments ranging from 0.20 in the thermocline to 0.02 in the ocean abyss.
The black corrugations are the ocean bed. (Figure taken from [16]).

10- 7m 2 s- 1 respectively. This disparity gives strong evidence for the dominance of other
dynamical mixing processes over molecular diffusion. In the past decade strong observa-
tional evidence has emerged for enhanced eddy diffusion localised within layers of ocean
hundreds of metres thick above rough or steepening regions of the ocean floor [7, 11, 13].
These mixing zones extend far beyond the turbulent boundary layer of ocean in immediate
contact with the bed, signalling that the anomalous diffusion is a non-local effect: that
fluid driven over the ocean floor in tidal flow, mesoscale eddies or else wave-driven currents
generates internal waves which break at some distance from the ocean floor and in so doing
mix up the local density field.

1.2 A universal spectrum of internal waves

The oceans are never silent, but resound with internal inertio-gravity waves at all length-
scales. Compared to the energies and velocities associated with the ever-present wave field,
the currents that are conventionally thought to control the global transport of temperature
and salinity are in many places rather feeble. Studies by Garrett and Munk in the 1970s,
culminating in [4], showed that data collected from moored, towed and dropped sensor
studies of the spectrum of waves within the ocean can be united into a single common
spectrum. There are various equivalent ways for casting the spectrum (see Section 2), but
one common form is in terms of the horizontal and vertical wavenumbers m and kH:

3fNEm/m,
E(kH, m) =i(1 +m/m,)5/ 2 (N~k% + f 2m-) (2)
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Figure 2: Energy spectrum in (kH, m) space. Transects represent permitted observational
probes of the spectrum by towed horizontal correlation (THC) and dropped vertical corre-
lation (DVC) detecting instruments. The cleavage plane kH = m(1 - f 2 /N 2 )'/ 2 does not
represent a physical cut-off, but is intended to clarify the plot.

where N is the buoyancy frequency, and f the frequency of purely inertial waves, and
the significance of these two parameters will be discussed in Section 2. The wave-field is
isotropic in any horizontal plane, so only a single horizontal wavenumber enters the relation.
The spectrum is graphically shown, including various distinguished limits of small or large
wavenumber, in Figure 2 drawn from [4]. The variation of the dimensional spectral density
E, and the bandwidth m,, with f (viz latitude) and N have been obtained theoretically
and validated by observation [6].

The existence of a universal spectrum has become a dogma of oceanography, allowing
the rate of mixing on centimetre scales to be backed out from the amount of energy in wave-
lengths of tens or hundreds of metres, scales which are much easier to probe experimentally.
A raft, of interlocking assumptions takes us from the measurements of long wavelength
modes that can be relatively easily performed (using for instance acoustic Doppler profil-
ing) to the small scale dynamics of interest. The rate of turbulent dissipation equals the
rate at which energy is supplied from to the mixing scales, and this can be computed using
a, semi-empirical formula (see footnote 13 in [11]) comparing the mcan-square shear rate,
latitude and buoyancy frequency to the open ocean Garrett-Munk spectrum at a reference
latitude of 30'. The rate of turbulent dissipation stands as a proxy for the dissipation of
available potential energy. Total turbulent dissipation (c) is assumed to exceed dissipation
of available potential energy by some factor between three and five. Thus the effective
diffusivity K. =FcN- 2 , with F taken to be between 0.2 and 0.3. Various links in this chain
of inferences have already been scrutinised theoretically (see e.g. the discussion of the use

of a constant value of F in [10]).
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1.3 Outline: A new weakly nonlinear model

In reviewing the observation evidence for a universal spectrum of internal waves, and the
detailed use of this spectrum to estimate mixing rates, three questions should immediately
be apparent to the reader. How can an equilibrium spectrum arise as an equilibrium state
of interacting waves? How do the waves interact? How is the rate of mixing related
to the energy present in the wave-field? There have been several attempts to reproduce
limits of the Garrett-Munk spectrum from theoretical arguments, in particular a recent
result by Lvov et al. [9] showing that the high frequency and short wavelength part of the
spectrum is consistent with a model of resonant triad interactions between waves of different
wavenumbers. In this report we propose a weakly nonlinear theory in which interactions
between waves are viewed as spatially and temporally isolated but highly non-linear events,
producing well-mixed zones of fluid. Between interactions waves evolve according to the
linearised equations of motion. The use of linearised equations of motion to describe the
collapse of well-mixed zones in stratified fluids is known to result in not too severe errors
[1] in predictions of the density and velocity fields.

2 Evolving the linear modes

We restrict to two dimensional disturbances with uniform background stratification and
no associated mean flow. We apply the Boussinesq approximation that variation in the
fluid density occurs on a much longer length-scale than variation in any of the perturbation
velocity fields, in which case it may be shown (see §6.4 of [5]) that the density may be taken
to be constant in any evaluation of the rate of change of fluid momentum, and density
variation admitted only when buoyancy forces are computed. The density field is then
decomposed into three separate components: p = po + fi(z) + 6p(x, z, t), and a hydrostatic
component is subtracted off the pressure field to balance the background stratification po+P.

Following §8.4 of [5], we may write down a triple of equations representing linearised
momentum balance:

ut-fv -PX+F (3a)
P0

vt+fu = 0 (3b)

wt = b - ?-z +H, (3c)

P0

where (F, 0, H) are the components of a specific body force that sets the fluid into motion,
(u, v, w) is the disturbance velocity field, and b =-2 the buoyancy field. The dynamical

P0
effect of the rotating frame has been trammelled up into the pair of Coriolis force terms on
the right-hand side of (3), in which we have followed convention by defining a parameter f =
2Q: centrifugal terms are assumed to have been assimilated into a redefined gravitational
acceleration g.

Mass continuity then takes linearised form:

bt + N 2 w=0, (4)

while, consistent with the Boussinesq approximation, we may assume that fluid parcels
neither gain nor lose mass as they are advected by the fluid, giving rise to the standard
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incompressibility relation:
UX + wz 0. (5)

We make immediate use of the incompressibility equation by defining a streamfunction
V/ such that u = V),, w = -VIx, allowing us to reduce the number of time-evolution equations
by one. Specifically, subtracting the x-derivative of (3c) from the z-derivative of (3a) gives
the vorticity equation:

V - f =v -b5 + T, (6)

where T - F, - Gx is the specific torque associated with the body force posited above. We
define a potential temperaturc for the fluid:

0= g(P- Po) = N2 z + b (7)

PO

so that the disturbed fluid is stably or unstably stratified according to whether Oz Z 0.
We scale lengths by the horizontal and vertical dimensions of our experimental box

(L,, L.), defining dimensionless hatted variables z = Lz22, x = L.-. We also define an
aspect ratio E =_ Lz/L,, which we anticipate being small. It is natural to scale the buoyancy
field using the background potential temperature: b = N 2L tb, and the time by the buoy-
ancy period t = t/N, which will turn out to be the minimum period of any of the linear
inertia-gravity wave modes of the fluid body. Scalings for the other dynamical variables
follow from selecting dominant balances between pairs of terms in the vorticity and mass
conservation equations. Balancing the rate of increase of vorticity ýbzzt with the rate of
baroclinic generation b3., suggests a scaling for the velocity fields: E/ =NL 2zb, and we
scale v to balance the y-component of the fluid acceleration vt with the Coriolis force fu:
V = ( 2NL-. To ensure that the specific torque term participates in the dominant balance
of terms in the vorticity equation set T- = cN 2?. We drop the hat decorations straightaway,
and present in dimensionless form our remaining governing equations:

2 + a - ePr v, + b, = -F (8a)

cvt + PrV!, = 0 (8b)

bt -e 2 v = 0. (8c)

Here Pr - f/N is sometimes called the Prandtl ratio, and encodes the relative strengths
of buoyancy to inertial forces. It is natural to take c = Pr, i.e. to consider a box with
aspect ratio dictated by the balance between rotational stiffness in the horizontal direction
(the tendency of fluid to move in Taylor columns), and stratification stiffness in the vertical
(resisting any lifting of isopycnal surfaces). A typical deep ocean value of the Prandtl ratio
is Pr= 0.1.

2.1 Unforced modes

With F and H set to zero, the fluid body supports free inertiogravity waves. It suffices
to consider the evolution of plane-wave disturbances, with well defined wavenumber k =
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(k, 0, m). The time evolution of the (0, v, b) fields must satisfy the triplet of equations:

(E2k2 + m 2 )Pt - icPrmv + ikb = 0 (9a)

cvt+imPrO = 0 (9b)

bt = ic2k k . (9c)

Since there is no explicit time dependence in these equations, we are allowed to seek solutions
with monochromatic time dependence: (0, v, b) cx e-i(k)t for some eigenfrequency w.
Determination of the eigenvalues and eigenvectors of the associated linear operator reveals
the existence of three unforced modes of the body:

(i) A geostrophically balanced steady mode, with w = 0. The pressure field is hydrostatic
Pz/Po = b, and the y-component of the velocity field fixed by the Coriolis-buoyancy
balance in (3a):

b= 0 and kbb =EPrmvb . (10)

(ii),(iii) Two propagating modes with frequencies

. /Pr 2 M 2 + e2 k2
m2 ±)=c 7, k_ 2  , (11)

with wave-components

Prm¢b± = ±-:w±v± and Prmb± = - .3kv+ (12)

With a little algebra, we see that an arbitrary initial disturbance may be decomposed
into balanced and propagating wave fields as:

Pr 2 mi2b + f 3 k Pr mv k Pr mb + E3 k2v

'bb=O bb Pr 2 m 2 +k 2c2  Vb= E(Pr2 M2±+ , (13)

with
1 ( wkb-EwPrmv) k ( • kbk-ePrmv) (14)0+ = -t rrm+€- b± kE2 T= + pr--- M-2 + -,2

and
1 (±Prmob kPrmb-cPr 2m 2v\

W Pr=2 , 2 + E2- 2  (15)

where we have identified w -= w+, and note that such modes can then be evolved with time
analytically. Note that the above expressions are singular if both k and m vanish: this
corresponds to static raising or lowering of the entire body of fluid.

2.2 Forced modes

Grave modes of the system are forced by some external agency. To avoid imparting un-
wanted spatial or temporal structure to the disturbance thereby set up, we assume white
noise forcing. Each mode may therefore include a forced component:

if:Pr m 0 ik
m2+0 2 k2  T

b 0 ic2k 0b (( +12k2(0 (16)
19t V 0 CiPrm 0 V 0
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where, by appropriate choice of the unforced component, it suffices to consider the initial
conditions V/ = b = v = 0 at t = 0. Now, it can easily be seen that the form of the forcing

is such as to never excite the geostrophically balanced mode, so that any forced mode can
be instantaneously decomposed into contributions from the two propagating eigenmodes.
Supposing that we have not chosen to force a mode with vanishing vertical wavenumber
(although the extension to such purely buoyancy driven waves is trivial) it is convenient to
chart the evolution of these two modes via the v-amplitudes:

V± (t) T PrM t e±iW(s-t)T(s) ds , (17)2Ec2 + T2) 0I

where for white noise forcing the integration measure may be written as T(s) ds = To(dWis+

idW 2,), where T-O is some constant representing the strength of the forcing, and Wp1, W 2,
are independent Wiener-processes. We therefore see that v±(t) are both (complex-valued)

Gaussian random variables, with easily computable mean and expectations. A little algebra

then gives the evolution of the forced modes:

V(k, t) = X (k, t), b(k,) = X(k,t) and V)(k,t) =- Y(k,t) , (18)

Prn Pr---

where X and Y are complex Gaussian random variables with covariance matrix:

ý ý X 1 1ý X P r • 7 ' To
R)" Fill (2W2(1 2 + (2k2)2

(t - i-sin 2w1) 0 0 (1 ,-cos2wt)
( - (0sin 2wt) -L (I - cos 2wt)202 (1 (1 2os 24),9

o + sin 2wt) (t - s2wt) 0
(I - cos 2wt) 0 0 (t+ -sin lwt

The stochastic evolution of the forced linear modes can therefore also be performed ana-
lytically. It will be necessary in diagnosing the proximity of the system to an equilibrium
state to relate the rate at which energy is supplied to the system by white-noise forcing, to

the rate of dissipation in breaking events. As an intermediate step to doing this, it is useful
to write down an energy balance the distribution of energy between system modes:

1 d E (jb(k) 12 + e [v(k) 2 + 2 ( 2k 2 + m2) lV(k) 2) =2 E T(k)V)(-k) (20)

2 dt
k k

the first term on the left hand side gives the available potential energy of the system (the
amount of energy that would be liberated if the preexisting stratification were restored), and
the remaining two terms the kinetic energy for out-of-plane and in-plane motion respectively.
For freely propagating disturbances it may be shown that energy is equipartitioned between
the first pair of terms and the third.

3 Wave-breaking

Large amplitude wave-disturbances are vulnerable to both shear and Rayleigh-Taylor insta-
bilities. In general these two mechanisms act together. Many experimental, numerical and
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theoretical studies have addressed the cascade of instabilities in a linearly stratified shear
layer. It is known that for simple shear flows, shear instabilities set in only if the Richard-
son number (Ri = N 2 /u2) does not exceed 1/4 [8], and direct numerical simulations have
tracked the instabilities then produced, starting with the formation of Kelvin-Helmholtz
billows that overturn the stratification gradient, and followed by production of streamwise
eddies [12]. However, this Richardson number criterion is known not to be an accurate
predictor of instability in other flow configurations [3], and the Reynolds numbers for which
accurate simulations of the instability-induced mixing are feasible remain an order of mag-
nitude below those seen in the ocean. Regardless of the obscurity of the conditions needed
for instability and of the kinematics of mixing, experiments [8] and observations of atmo-
spheric clear-air turbulence [3, figure 5] give a clear and consistent picture of the effect of
mixing upon the stratification in a fluid: compact patches of well-mixed fluid are produced
(with stratification obliterated) and gravity waves shed into the surrounding medium. The
mixed patches are typically surrounded by layers of steeply stratified fluid, giving rise to an
easily identified "rabbit-ear" signature in radiosonde studies of the thermal profile, which
would correspond to sharp spikes in N 2 in our system.

We introduce a simple diffusive model for the mixing of fluid by a breaking gravity wave.
Mixing is taken to occur whenever the fluid becomes gravitationally unstable (so that at
some site O, < 0), with no accounting for shear enhancement. The mixing time-scale is
assumed to be much smaller than the period of the wave that triggered mixing, so that the
continuing evolution of the wave-field can be halted while mixing occurs. For simplicity,
mixing is assumed only to redistribute fluid mass so that the Eulerian distribution of velocity
is frozen in during mixing. This is unphysical, but allows the question of parametrising the
turbulent dissipation of kinetic energy to be side-stepped. To select a diffusive model we
impose the following constraints:

(i) Mixing must be energy-dissipative. Since the velocity field is unaffected by mixing,
this means that the available potential energy must decrease monotonically with time.

(ii) Mixing zones must have compact support, and must include all regions of fluid in
which O0 < 0.

(iii) Density must be exactly conserved at all times.

(iv) Mixing must terminate upon reaching a stably stratified state. The mixing scheme
should produce well-mixed zones, rather than set up a stable stratification.

(v) The "rabbit ear" structure should be reproduced in the layers of fluid surrounding
mixed-zones.

Constraints (ii)-(iv) point towards a diffusive scheme in which the diffusive flux is propor-
tional to the gradient in the potential temperature rather than buoyancy (that is J oc -VO,
rather than cx -Vb). A simple candidate scheme has:

Db_
-- = V - (D[Oz]VO) with D[Oz] = -H(-Oz)O2 . (21)

Here the H(x) is the Heaviside function, and we have introduced a mixing-time variable
T. In our scaled geometry V ( a ). Check that property (i) is satisfied: Multiplying
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Figure 3: Diffusive scheme applied to the unstable buoyancy profile: b(x, z) = 0.3 exp[-((x-

0.5)2+ (z - 0.5)2)/0.09] cos[27r(x + z)]. (a) (b) are surface plots of the potential temperature
distribution before and after mixing. (c) and (d) give potential temperature profiles on the
transects T = 0.6 and z = 0.6 respectively. The blue curve is the profile before mixing, and

the green curve is the profile after mixing.

both sides of (21) by b and integrating over the entire of the fluid domain, we have

d 1 b(2d IVb12' dxdz < 0 (22)

since by construction D = 0 except where ab/Dz < -1. In integrating by parts and dis-
carding boundary contributions, we have made tacit use of the fact that periodic boundary
conditions will be imposed upon b. Physically we expect strong diffusion initially in zones
where Oz < 0, but. that diffusivity will bleed away with time, leaving patches of uniform
0 (in z if not in x). An exam-ple of the application of this diffusive mixing scheme to an
initially unstable density profile is shown in Figure 3. Note that for typical aspect ratios

(f : 0.1) density is almost conserved at each x-station. At x-stations with a single density
inversion (i.e. interval in which Oz < 0) this means that the mixing produces a Maxwell-
type construction, with the density made uniform in the smallest z-interval that contains
the unstable zone, while conserving total fluid mass and giving a continuous final density
distribution (see Figure 3c). The weakness of density diffusion between x-stations means
that density distribution is markedly less smooth on horizontal sections than on vertical
sections (see Figure 3d). This is intuitively appealing: although the breaking inertiogravity
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waves respect the x and z scalings introduced here, Coriolis forces act only weakly upon the
turbulent eddies generated during wave breaking, so that we expect mixing to be isotropic
in the unscaled x and z coordinates.

Note that condition (v) is not satisfied by the diffusive scheme (21) which always pro-
duces continuous 0 profiles, and does not in general enhance the stable 0 gradients surround-
ing a mixing zone. One remedy for this would be to extend the support of the diffusivity
function D to include some region of stably stratified fluid. Ensuring that this is com-
patible with the dissipative condition (i) is difficult. In the direct numerical simulation
literature the Thorpe displacement is sometimes invoked for this purpose [12]. The Thorpe
displacement d(z; x) is defined for the column of fluid occupying each of the x-stations, as
the minimum distance that the fluid particle at z must be moved in a vertical reordering of
the fluid particles in the column to create a stable stratification. It has been suggested that
at any instant the region in which turbulent overturning must occur can be identified with
the part of the fluid having non-zero Thorpe displacement [2]. However, one may easily
construct examples in which diffusion over the entire zone of non-zero Thorpe displacement
would lead to a gain in available potential energy, in violation of condition (i). A more
promising approach attempts a more careful budgeting of the energy available for mixing
from both the kinetic energy and available potential energy of the flow. The diffusivity D is
identified with the amount of turbulent energy present, and is allowed to self-diffuse. Zones
of fluid in which Oz > 0 are treated as diffusivity sources and sinks respectively. While these
models allow diffusion over significantly larger fluid regions than (21) and may therefore
satisfy (v), and can be constructed so as to conserve [14] or dissipate energy, they also
require the addition of multiple ill-constrained parameters for the separate diffusivities of
density, momentum and turbulent energy.

4 Numerical implementation

A cartoon of the numerical scheme for combining linear evolution (§2) with diffusive mixing
(§3) is given in Figure 4.

We describe briefly some of the numerical desiderata. We impose periodic boundary
conditions upon the b, 0 and v fields, and discretise the numerical domain with a grid of
M points in the x direction and N points in the z-direction. Typically we let M and N
range from 32 up to 256. Fast Fourier Transforms are used to pass between physical and
wavenumber representations of the wave fields. The time interval At over which the fields
are allowed to evolve between mixing events is held fixed throughout the simulation, so that
the evolution of the unforced components can be determined in advance by the computation
of time evolution operators exp(T-iw(k)At) for each of the modes. Stochastic evolution of
the forced modes requires us to generate the Gaussian random variables X and Y that
feature in the equation (18). We do this by calculating the covariance matrix (denoted by
C(At; k)) for (RX, QX, JY, QBY), and finding its Cholesky decomposition C - LLT. The
requisite X, Y at each time step may then be generated as (RX, .3X, RY, L3Y) Lý, where
Sis a quadruple of N(0, 1) random variables.

For the implementation of the diffusive mixing step, spatial derivatives are approximated
by second order centred differences, and the time stepping is performed with a fully implicit
second order scheme (the Matlab routine ode23s, based on the Rosenbrock formula, which
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Figure 4: A numerical scheme for combining linear evolution with diffusive mixing.

we have altered to make use of UMFPACK to perform an LU-factorisation of the large but
sparse Jacobian matrix). To ensure that the associated system of time equations have a
well-defined Jacobian it is necessary to smooth the Heaviside function term appearing in
the diffusivity. In practice we use:

H(x :t I- ,x+vr_4 (23)
2k

where the smoothing length c is set at machine precision E z 10-12 without any evident
irregularity in the running of the code. Diffusion was terminated when 0, exceeded some
critical value (typically -0.005) throughout the fluid domain. Numerical results for the
mixing step1 were tested using a finite element package (COMSOL Multiphysics 3.2).

There are two fundamentally different experiments that can be performed using the
numerical scheme described here. In the first, relaxation, all wavenumbers are initially
given identical energies, randomly allocated between leftward and rightward propagating
modes, and with uniformly randomly distributed phases for each component. The system is
then allowed to evolve without forcing until it reaches equilibrium with, in the end stages,
exponential decay in the total energy, and increase in the waiting time between mixing
events. In the second experiment, build-up, one or two of the gravest modes of the system
are supplied with white noise forcing. and the transmission of energy from these modes to
other modes is charted.
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Figure 5: (a) Effect of varying initial state. The three curves give relaxation dynamics of
system starting with different random initial states. (b) Green data set replotted on log-log
scale. All simulations are run with M = N = 64.

5 Results

5.1 Relaxation experiments

The effect of the initial state upon the evolution of the system is shown in Figure 5a. Only
the energy in propagating modes is plotted - the contribution from geostrophically balanced
modes is an order of magnitude smaller. In part b of the figure, one of the data sets is
replotted on a linear-log scale to show the exponential convergence of the total wave energy.
It can be seen that the initial state is not forgotten, but helps to determine the total energy
that the system relaxes to. Two systems with initially closely separated energies ultimately
equilibrate with similar energies, as the red and blue curves show.

Phase structure in evolved states. It must be asked whether the equilibrium states of
the system have definite phase as well as energy spectra - i.e. that the different wave
components must have specific phase lags to avoid constructive interference that may lead
to breaking. We test for this by taking one of the late time system states from Figure 5a,
randomising all of the phases and allowing it to evolve with time, to see if the equilibrium
is altered. Results are shown in Figure 6. It is seen that the apparent equilibrium energy
of the propagating modes (which is found by fitting the energy-time curve to a decaying
exponential and extrapolating to infinity) varies by less than 2%. This suggests that the
equilibrium phase spectrum of the system is white.

The effect of varying the time-interval between mixing events is shown in Figure 7, in
which an identical initial state is let evolve three times, with different time intervals At
between mixing events for each of the iterations. The energy of the system is sensitive
at early times to the value of At, but not the value of energy that the system ultimately
converges to. Smaller values of At give faster convergence to the equilibrium energy.

Evolved spectra. In Figure 8 we compute the detailed distribution of energy among wave-
modes for the green data set from Figure 5. The spectra corresponding to other data sets are
qualitatively similar, and we are developing methods for direct comparison. The redness of
the spectrum is similar to that of the Garrett-Munk spectrum, although lack of resolution
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prevents direct comparison of the scalings for the inertial peaks. The spectrum is also

peaked at small m (corresponding to purely buoyancy driven waves) in visible disagreement
with the GM spectrum. These modes correspond to lifting of vertical columns of fluid, and
do not therefore participate in breaking: either in determining whether breaking will occur,
or in mixing, because, as was discussed in §3, this mainly leads to vertical transport of mass.
The persistence of these modes, once excited, is a knotty problem for the model.

5.2 Build-up experiments

It is not feasible to force a single mode of the system, since any spatial periodicity of
the forced mode will be inherited by the modes created during wave breaking, leading
to a sparse energy spectrum. To break this symmetry we force a pair of grave modes
(k, m) = (27, ±27) with the same forcing constant To, and the first mode initially just
below its breaking amplitude and the second mode started from zero amplitude. It is also
necessary to impose an adiabaticity constraint upon the forcing, that the time taken for the
forcing to bring the forced mode to breaking must greatly exceed the period of the mode,
i.e. that:

(w 3)1/ 2 m 2 + E 2 k2

'To < 2km (24)

For To significantly greater than this threshold value, the energy in the forced modes is
observed to grow without bound. Wave-breaking only removes energy from the buoyancy
field, and we can only be assured that energy is equipartitioned between the available
potential energy (plus the out-of-plane kinetic energy) and the in-plane kinetic energy if the
adiabaticity condition is met.

It can be seen that the energy spectrum is dominated by the handprint of the forced
modes. These modes remain saturated (at the brink of breaking) and transmission of energy
to other modes is inefficient. In Figure 9a we show the total energy budget for one realisation
of this system, showing that that it attains a flux-dissipative equilibrium (with the rate of
dissipation by mixing equal to the energy input from the white noise). Experimentally the
mean energy value in this equilibrium depends upon the particular modes being forced,
but not upon the strength of the forcing TO or upon the time between mixing events At.

273



X 105

-oa nergy of wave-field *- ctual energymroyl t "j,2.5 e x-pected energy input r.

0' .4-

C~ 1.5

00
-010 100 2000 4000 6000 8000 10000 102

t Iml Ikl

Figure 9: (a) Energy budget for forced mode, showing rate of energy input from white noise,
against total energy of all wave modes. (b) Time-averaged energy spectrum when system has
attained flux-dissipative equilibrium. Simulations were run on an older version of the code,
on an Al = N = 25 grid, with unnormalised energies (which must be divided by M 2N 2 = 220
for comparison with Figure 5) and anisotropic diffusion (setting V = (9/9x, &/Oz) in (21)),
but are in qualitative accord with experiments using the modified code described in this
report.

The rate of energy increase in unforced modes is slow, and it is unclear whether a forced-

dissipative equilibrium has actually been reached by the end of the simulation. In truth
Figure 9a probably rcpresents no more than the achievement of a flux-dissipative equilibrium
for the single forced mode of the system. In Figure 91b we show the (coarsely-binned) energy
spectrum of the system as a function of wave-number, showing clear peaking at the forced
wavelengths. It may be possible to clarify whether equilibrium has been attained by running
a hybrid of the relaxation and build-up experiments, in which the other modes are given
some initial energy and allowed to relax to rather than build 'up to a steady state.

6 Discussion

Basic questions about the capabilities and limitations of the model remain unasked. The
preliminary simulations described here show that a large number of energy equilibria can
be accessed when an unforced wave-field is allowed to relax from some higher-energy initial
state. These states appear to all have structure-free phase spectra and relatively homolo-
gous energy spectra, suggesting that the family of equilibrium states could be paramnetrised
by their total energy, and we are in the process of running simulations to simulate relaxation
for a large assay of initial states at a higher resolution, in order to confirm this. The problem
of the persistence of 'ai = 0 states remains unresolved. Results of the build-up simulations
are less promising - a method must be found to subtract out the forced mode from the
final spectra (Figure 9), or for hastening the equilibration of these modes. Incorporation of
forcing is vital to our efforts to use the model to tackle the problem of anomalous diffusion
(§1.1), since the rate of mixing will be ultimately controlled by the rate of energy input into
the wave-field.
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1 Introduction

1.1 Oceanic background

Mesoscale vortices have recently been recognized to play an important role in redistribution

and transport of water properties (e.g. temperature, salinity) around the oceans. The

interaction of vortices with seamounts, submerged ridges, or islands might result in enhanced

and localized transfer of anomalous fluid from the vortices to the surrounding environment.

In addition, the interaction could end in the formation of new vortices downstream otherwise

complete destruction of the incident vortices. This topic has been investigated for the past

several decades for e.g. Meddies in the eastern North Atlantic, Agulhas rings in the eastern

South Atlantic, and North Brazil Current (NBC) rings in the western tropical Atlantic. In

the current study, we will focus on, in particular, the behaviour of the last kind of vortices,

NBC rings which interact with the Lesser Antilles.

It is believed that NBC rings are one of the leading mechanisms for transporting the up-

per ocean equatorial and South Atlantic water into the North Atlantic as part of the Merid-

ional Overturning Cell (MOC). The MOC transports cold deep water southward across the

equator and, to be balanced, transports upper ocean South Atlantic waters northward. In

the upper layers, the NBC is a northward flowing western boundary current that carries

warm water across the equator along the coast of Brazil (Figure 1). Near 5' - 100 N,

the NBC separates sharply from the coastline and retroflects to feed the eastward North

Equatorial Counter Current (NECC) [7]. During its retroflection, the NBC occasionally

pinches off isolated anticyclonic warm-core vortices exceeding 450 km in overall diameter,
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2km. in vertical extent, and swirling at speed approaching 100cms- 1. These NBC rings

move north-westward toward the Caribbean at 8 - 17 cms- 1 on a path parallel to the coast-

line of Brazil. As part of the MOC, in most cases, they then interact with a complex island

chain, the Antilles islands [6] and enter the Caribbean Sea. (Episodically, they enter the

North Atlantic subtropical gyre.) The inflow into the Caribbean Sea ultimately feeds the

Florida Current which is now recognized to be a fundamental passage for northward trans-

port of upper ocean waters in the global thermohaline circulation. Therefore, the Atlantic

40C (hence NBC rings) is an important element of the global thermohaline circulation

and a fundamental component of the global climate system. Recent observations reveal

that relatively large (average diameter 200 kin) energetic anticyclonic vortices were found

downstream of the Antilles islands in the Eastern Caribbean Sea and translated westward in

the central part of it whereas cyclonic vortices were observed primarily near boundaries in

the Eastern Caribbean Sea [11] (Figure 2). Unfortunately, it is difficult, by observations, to

know whether or not such large anticyclonic and cyclonic vortices observed in the Eastern

Caribbean Sea have been produced as a consequence of the interaction between NBC rings

and the Antilles islands, and if so, how they have been formed. In the present work, we

shall try to answer part of this question through laboratory experiments.

IONBafbado

No r thEqalh 11 C. t rarre.on

le n
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Figure 1: Sketch of the upper-ocemn circulation in the western tropical Atlantic fi-om [5].

1.2 The previous works

Before mentioning a possible mechanism for the large anticyclonic and cyclonic vortices

formation in the Eastern Caribbean Sea, let us introduce briefly two previous works on
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Figure 2: Drift trajectories of 28 cyclones (blue) and 29 anticyclones (red). Anticyclones seem to be

dominant in the Eastern Caribbean Sea between 650 W and 75 0W, from [11].

interaction of vortices with multiple islands.

The interaction of a monopolar, self-propagating cyclonic vortex with two circular cylin-

ders was investigated in the laboratory [2] (Figure 3 (a)). Typically after the vortex came

in contact with the two cylinders, the outer edge of the vortex was peeled off and a so-called
"streamer" (or two "streamers") went around one of the cylinders (or each of the cylinders)

(Figure 3 (b)). When the streamer velocity v, was large enough (i.e. 400 < Re < 1100

where Re = vsd/v, and d is the diameter of the incident vortex), the "streamer(s)" turned

into a new cyclonic vortex (or two new vortices). During the experiments in [2], three

parameters were varied: G, the separation between the cylinders; d; and Y, the perpen-

dicular distance of the center of the vortex from an axis passing through the center of the

gap between the cylinders (see Figure 3 (a)). One of the remarkable observations in [2] is

that the flow within the vortex was "funneled" between the two cylinders and formed a

dipole vortex, much like water ejected from a circular nozzle generates a dipole ring. This

behaviour occurred provided that -2 < Y/g < 0, 0.25 < G/d < 0.4, and Rec > 200, where

g = G/2, ReG = UcG/v is the Reynolds number based on a length scale - O(G), and UG

is the maximum velocity of the vortex fluid in the gap. The size of the created cyclonic and

anticyclonic vortices (i.e. a dipole) was smaller than that of the original vortex.

A second relevant work is a numerical investigation of the interaction of both a self-

propagating and an advected vortex with multiple islands [13]. The islands were represented

by thin vertical walls aligned in the North-South direction with gaps having a width of

20 % of the vortex diameter. This study showed that if the individual islands were small
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compared with the vortex radius (e.g. L/R, = 0.3 where L is the island length, R, is the

initial vortex diameter 1 ), the vortex reorganized in the basin downstream of the islands,

whereas it always split into multiple offsprings if the islands were large (e.g. L/R, = 1.5)

(Figure 4). Moreover, intense vortices experienced relatively greater amplitude loss than

weak vortices. The results of [13] may give an account of the observations of anticyclones in

the Eastern Caribbean Sea, but the generation of cyclones in the Sea can not be explained

by their results as no cyclones were seen in [13].

toopx d=2r toPvO North

C. /ii§ Ire streamer
---- ---- ---- --- ---- YLstagnation---------- .c _ point

S........... . .• ,

U

vortex

bottom .U South

(a) (b)

Figure 3: (a): sketch illustrating the geonetry of tlhe encounter between the vortex and two cylinders,

from [2]. The diameiter of the cylinders, D, is 5cm. (b): sketch of a streamner, from [3].

EXPT 35 EXPT53

(a) (b)( a ), ...... ..... ..... ....... ..

Figure 4: Multiple-islands numerical experiments from [13]. (a): L/R, = 0.3. (b): L/R 4  1.5.

1.3 Hypothesis

Since the Lesser Antilles have passage width between 30 - 60 krrt. and the approaching NBC

vortices' size varies between 200 - 400 km, G/d lies in the range 0.07 - 0.3. Although this

'The definition of the vortex initial radius is not stated in [13], hence R., and d (defined in [2]) are not

necessarily equal.
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Figure 5: Sketch illustrating a possible formation mechanism for the large Eastern Caribbean vortices [11].

range does not exactly fit in 0.25 < G/d < 0.4 obtained in [2], it is natural to anticipate that

dipole formation is likely to occur downstream of the Lesser Antilles' passages. Assuming

that several pairs of dipoles are formed at western side of the islands, we expect that

transition from small scale vortices to large scale structures will occur by the merging of

vortices of like sign (Figure 5). When rotation is present, the scale to which the vortices

grow is determined by instability processes that inhibit vortices to grow to scales larger

than the Rossby radius of deformation [9]. The coalescence of same sign vortices is similar

to the well-known feature of inverse energy cascade in two-dimensional flow [10]. Finally,

vortices having a diameter of the order of the Rossby radius of deformation will form and

drift westward due to the planetary /3-plane (Figure 5).

2 The experiments

2.1 Experimental apparatus

The experiments were performed in a square tank of depth 45 cm, length and width of

115 cm. Both 'top-view' and 'side-view' illustrations of the apparatus are shown in Figures

6 & 7. Some experiments were carried out in a much smaller tank (depth 36 cm, length and

width 60 cm). However, as we are interested in knowing not only whether or not several

dipoles are formed when vortices interact with a chain of obstacles, but also the fate of the

dipoles (if they are really formed), it was appropriate to focus on experiments performed

in the larger tank. The apparatus in Figures 6 & 7 was mounted concentrically on a 2 m-

diameter rotating turntable with a vertical axis of rotation. The sense of rotation of the

turntable was anticlockwise. A square tank was used to avoid optical distortion from side

views associated with a circular tank. The tank had a sloping bottom which makes an angle

a to the bottom of the tank in order for a vortex to self-propagate leftward when looking
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Figure 6: Sketch of the experimental apparatus: top view.
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Figure 7: Sketch of the experimental apparatus: side view.

upslope [4]. We note that there is an analogy between the /3-plane effect and the sloping

topography effect provided that the angle of the slope a and the Rossby number Ro (the

ratio of the advection term to the Coriolis term in the horizontal momentum equations) are

sufficiently small [4]. The shallowest part of the tank corresponds to North. Hence, East

is to the right when looking upslope, West is to the left, and South is the deepest part of

the tank. The tank was filled with fresh water, which was initially in solid body rotation.

Seven circular cylinders whose diameter is D were aligned in the North-South direction, and

each of them was separated by a gal) G as shown in Figures 6. The position of the central

cylinder (the fourth one from North (or South)) was always fixed. However, the position of

the other cylinders could be changed to vary the value G. The depth of the water at the
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Figure 8: The five configurations of the obstacles used in the experiments. The position of the fourth

cylinder from North (or South) was kept fixed.

central cylinder, h0 , was chosen to be 11 cm which was much larger than the Ekman layer

depth 5Ek = 2v/f z 3 mm, where v is the kinematic viscosity of the water and f is the

Coriolis parameter. The bottom of each cylinder was sliced at an angle so it rested flush

with the sloping bottom.

A barotropic cyclonic vortex was generated by placing an ice cube in the water [14],

a method dynamically similar to withdrawing fluid from a sink positioned on the sloping

bottom. The water surrounding the ice cube, due to conduction, becomes colder than the

surrounding water and sinks as a cold plume, forming a cold dense lens within the thin

bottom Ekman layer. The dense plume induces inward velocities along the entire column

depth above the bottom lens, and then, influenced by the Coriolis force, the water column

(above the dense lens) starts to spin cyclonically. In order to conserve mass, the dense fluid

in the bottom Ekman layer flows radially outwards with a rapid velocity in comparison to

the rotation period of the tank and thus a dense anticyclonic vortex does not form on the

bottom. The fluid within the dense lens moves downslope together with the established

barotropic vortex above it. Influenced by the Coriolis force, both the cyclonic water column

and the cold lens change their direction and start drifting westward with a very small

meridional displacement. Although NBC rings are anticyclonic vortices, in the laboratory it

was not possible to reproduce stable barotropic anticyclones as they tend to be centrifugally

unstable [8] and become non-axisymmetric in a few rotation periods. Furthermore, NBC

rings have a baroclinic structure and move within a stratified fluid. As shown by [3], the

use of cyclonic vortices does not limit the generality of the results, which can be easily

extended to anticyclones. In particular, the circulation equation around the obstacle and

the equation relating the streamer velocity to the vortex velocity (the equation in Figure

3 (b)) still hold for anticyclones. We neglected the effect of a stratified environment and
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the influence of the advection mechanism on the interaction in our present study. Lack of

stratification is possibly the weakest point of our model but the good agreement between

the results obtained in [1, 2, 3] and the oceanic observations suggests that stratification

does not invalidate the relevance of the results discussed here.

For all the experiments, the Coriolis parameter f was fixed at 0.25 s-1 , and v

0.01 cMn2s- 1. The bottom slope was set at s = tan a = 0.5, where a is the angle between the

sloping bottom and the horizontal so that the self-propagating vortex could move westward

with a speed U 0.2 cms- 1. The vortex was produced approximately 20 cm westward of

the eastern wall of the tank. Hence, the vortex moved 20 cm westward and interacted with

the chain of cylinders before the spindown time T = ho/v/Tf z 200 s. The diameter of the

cylinders, D, is 3.3 cm. Three values for the size of the gaps, G = 3, 1.5, 0.7 cm and five

types of configurations of the obstacles (Figure 8) were studied. The azimuthal velocity

profile of the vortex in the experiments, v0 , is similar to that of a Rankine vortex with an
approximately constant vorticity (solid body rotation) for 0 < r' < r' and a velocity

which decays roughly like 1/r' for r' > r' where r' is the radial coordinate originating

in the vortex center. We define the vortex radius r to be not rma' where the azimuthal

velocity of the vortex is maximum, but the radial distance (from the center of the vortex)

where the velocity has decayed by approximately 30 % (i.e. r = r?,nax/0.7). This definition

for the vortex radius is same as the one in [1, 2]. The incident vortex diameter d ranged

between 7.6 - 19 crn due to non-uniformity of the size of the ice cubes used.

2.2 Measurements

A video camera was mounted above the tank and was fixed to the turntable so that we were

able to observe the flow in the rotating frame. For half of the experiments, the vortex was

made visible by using a white sloping bottom, dripping dye (food coloring) on the ice cube

and adding buoyant paper pellets on the free surface. The motion of the dyed vortex was

also observed fr-om the side of the tank. For the rest of the experiments, the paper pellets on

the free surface and a black sloping bottom were used in order to measure the velocity field

and to calculate, for instance, the circulation of the vortex. Images were grabbed from the

recorded video tape by using XCAP. The time interval between each image was 0.15s. An

image processing software, DigiFlow was used to do particle tracking, and then calculate

the velocity field by mapping the individual velocity vectors onto a rectangular grid using

a spatial average over 2 cum and the time average over 10 s. Once the gridded velocity was

obtained, quantities such as the position (center), the radial distance r' where the velocity

is maximum (i.e. 7r-'), and the circulation of the vortex (before and after the interaction

with the obstacles) were computed by using I\atlab. Let x, y be the zonal and meridional
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coordinates in Figure 9, respectively. Further, let us define U, V to be the x-, y-component

of the vortex velocity, respectively. The position of the vortex center was determined as the

intersection of two lines; one is a line where IUI is maximum and parallel to the y-axis while

the other is a line where IVI is maximum and parallel to the x-axis (red lines in Figure 9).

Two different rmax were computed by defining two radial distances from the vortex center,

namely

rmax = max(ri, r2, r 3 , r 4 ) , ray = average(r 1 , r2, r3, r 4 )

where r, is the radial distance from the vortex center to the eastward location where IVI

is maximum, r2 is the distance from the vortex center to the northward location where

JUI is maximum, etc. Defining rmax, ray was important particularly when the vortex was

distorted. Since ray turned out to be better in general (that is, jUl and IVI are almost

maximum at r' ray), we focused only on the case rmax = ray. Once rmax was obtained,

the circulations of the vortex FB, rA (before and after the interaction, respectively) were

computed:

PB = A-wi,

where A is the area of the single grid square, and wi is the relative vorticity at each grid

point within r' = rmax -: ray, B (ray, B = ray before the interaction). A similar expression

can be written for FA. By looking at the video tape, it is possible to know the number of

the offsprings N, whether or not a dipole was formed (or several dipoles were formed), and

whether there was a backward flow (fluid flowing between the cylinders from west to east)

or not.

3 Experimental results

3.1 G = 3cm

Let us firstly discuss the results for G = 3 cm with d = 7.6 - 19cm (0.16 < G/d < 0.4i

because it corresponds to the kind of geometry found when the NBC rings interact with

the Lesser Antilles. As soon as a vortex encountered the obstacles, a dipole almost always

formed for all the configurations showed in Figure 8. However, the formation of two or more

dipoles never occurred although the vortex extended for several cylinder and gap lengths.

After a dipole formed, the cyclonic part of the dipole became dominant. Depending on the

configurations of the obstacles and the initial vortex position, a relatively large cyclonic

offspring was produced either directly from the cyclonic part of the dipole, or from the
"remnant" of the original vortex at the gap positioned just "South" of the gap where the

dipole was formed. (The vortex moved south due to its image vortex. The degree of
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Figure 9: Velocity (arrows) and vorticity (colors) fields of a typical vortex in the experiments. The

intersection of the red lines is the center of the vortex. 7"i (i = 1... 4) are perpendicular distances fr'om

the center to the green lines. Tie circulation based on 7e,, is the sum of the vorticity at each of the yellow

triangles.

the southward movement of the vortex depends on the configurations.) The number of

offsprings, N, was I in most casess, rarely 2, and never 0. The formation of large vortices

downstream of the obstacles is surprising as the gap width was only 16 - 40% of the

initial vortex diameter. Figures 10 & 11 show two laboratory experiments with G = 3

cm. Figure 10 shows the velocity and vorticity fields for a configuration 7, while Figure

11 shows an experiment with configuration 3 in which a white sloping bottom and dye

were used to visualize the flow. By Figures 12 & 13, our experimental results and the

numerical observations [13] discussed in §1.2 can be compared. According to Figure 12, the

relative reduction of vortex intensity tends to be large (small FA/FB) for intense vortices

(large FB), as observed in [13]. Figure 13(a) (Figure 13 (b)) is a plot of 'Di5l/rv, B vs

N' ('Dj5 1/rav, B vs Backward flow'), where Djsj is the total length of the 'middle' island

(e.g. Disj = D = 3.3 cm for configuration 3, Dj81 = 2D = 6.6 cm for configuration 4 etc).

So Djs/r 1 av, B is equivalent to L/R.j used in [13]. Figure 13 (a) shows that, in most cases,

N = 1, independently of the value of D~is/rv, B (or L/Ri). This result is in disagreement

with the main result of [13]. On the contrary, Figure 13 (b) agrees with a result of [13]

because there is a backward flow when Disl/T'avB (or L/R•4) is small. ([13] says a vortex

did not 'notice' the existence of the islands if L/Ri is small.)
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Figure 10: Velocity and vorticity fields for a configuration 7 experiment: (a) just before the interaction,

t = 19.5 s; (b) dipole formation, t = 48 s; (c) the cyclonic part became dominant, t = 102 s; (d) offspring

formation, t = 126 s.

3.2 G = 1. 5 cm, 0. 7cm

When G was decreased, a different behaviour was observed: when G = 1.5 cm, a small

dipole still formed and the cyclonic part was dominant, and N = 0 or 1. When G = 0.7 cm,

a small portion of the vortex leaked through the gaps but no coherent structure was formed

(i.e. always N = 0). The reason why the vortex generation was suppressed for G = 0.7 cm
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Figure 13: (a): Di~a/rav, B vs N where Dj51 is the total length of the 'middle' island (see the text for

details), and rav,B is rav before interaction with the cylinders. (b): Di~l/ra,,,B vs 'Backward flow'. * are

experiments with a black bottom slope, analysed by particle tracking. E and n are experiments with a white

bottom slope and dye, analysed by streak and eyes, respectively.

and was reduced for G = 1.5cm might be explained by considering the thickness of the

boundary layers (b.ls) over the vertical walls of the obstacles. (We are interested in only

the zonal b.ls since the flow through the gaps is zonal.) On the f-plane, the b.1 thickness J

is expressed as

S=LEH1/EL == výH 1/Q

where EL = vl/(QL 2 ) is the Ekman number based on the horizontal length scale L, EH

v/(QH 2) is the Ekman number based on the vertical length scale H, and Q is the rotation

rate of the system. In the laboratory, v = 0.01 cmn2 s- 1, Q = f/2 = 0.125s-1, L = D

3.3 cm, and H = h0 • 10 cm.

z l- 6=1.68cm

On the /3-plane, two kinds of zonal Ekman b.Ws exist, namely

6zonal, m = (5ML) , 
6 zonai,s =(6,L)

where 6m = (v/loo)½ is the Munk b.l, 6, = r/30o is the Stommel b.l, r = SEkf/( 2 H) is the

linear friction coefficient, 13o is the beta parameter, and 6Ek = v-/f is the bottom Ekman

layer depth. io = sf/H 0.0125s-icm-1 in the laboratory.

S 6 zonal, m = 1.26 cm , bzonal, s = 0.97 cm

Therefore, the largest thickness of these zonal b.ls is 1.68 cm. If the gap width G between

the cylinders is much smaller than 3 cm, then the viscous b.ls occupy the entire region
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within each gaps, and consequently, the presence of the b.ls make the fluid within the gaps

slow. This is the reason why the number of offsprings, N, decreased as G was reduced.

4 Conclusions and further studies

For G = 3 cm, a dipole was observed to form in most experiments for all the configurations

of the islands, however the formation of two or more dipoles never occurred. This result

invalidates our hypothesis. After a dipole formed, the cyclonic part of the dipole became

dominant. Depending on the configurations of the obstacles and the initial vortex position,

a relatively large offspring was produced either directly from the cyclonic part of the dipole,

or from the "remnant" of the original vortex at the gap positioned just "South" of the gap

where the dipole was formed. We also found that intense vortices experienced relatively

greater amplitude loss than weak vortices, and the number of offspring, N, was 1 in general,

independently of the size of the 'middle' islands. Observations of drifters in the Caribbean

Sea [11] mentioned in §1.1 might be explained from our experimental results. According

to [11], large energetic anticyclonic vortices were found downstream of the Lesser Antilles

and translated westward while cyclonic vortices were observed primarily near boundaries in

the Eastern Caribbean Sea. The weak cyclonic vortices may have been produced from the

cyclonic part of a dipole formed when a NBC ring collided with the islands. It seems likely

that the dominant anticyclonic offspring was formed either directly from the anticyclonic

part of the dipole, or from the "remnant" of the original vortex (after the dipole formation).

When G is smaller than a critical value (G < 0.7 cum), no vortices were formed. This may

suggest that for small enough island passages, no vortices are formed in the ocean due to

the presence of b.Is that, can slow the fluid within the gaps. This hypotheses is hard to

prove because the oceanic kinematic viscosity v is not known for this particular process.

In the present study, the vortices were cyclonic and barotropic. Moreover, they ap-

proached perpendicularly to the chain of obstacles. On the contrary, in the ocean, NBC

rings are anticyclonic and baroclinic, and they move along an oblique direction to the line

of the islands. It would be interesting to see how the results described above would be

modified by the inclusions of these details (i.e. anticyclonic vortices, baroclinicity, direction

of propagation) in the laboratory experiments.
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engineering. The program also included a popular public lecture on the timely subject of tsunamis. And as usual this
summer ended with the Fellows' reports including two experimental projects and theoretical work on a variety of
problems inspired by the summer's research theme.

Oliver Bfihler and Charlie Doering acted as co-Directors for the summer. Janet Fields, Jeanne Fleming and Penny
Foster provided the administrative backbone for the program. Keith Bradley supplied technical support, and Matt Finn
ran the computer network and graciously helped with the production of the summer's proceedings volume. As always we
are grateful to Woods Hole Oceanographic Institution for the use of Walsh Cottage, the perfect setting for the GFD
program.
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